Switch to side-by-side view

--- a
+++ b/exp_template-mv-ml-v2.ipynb
@@ -0,0 +1,534 @@
+{
+ "cells": [
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "import socket\n",
+    "if socket.gethostname() == 'dlm':\n",
+    "  %env CUDA_DEVICE_ORDER=PCI_BUS_ID\n",
+    "  %env CUDA_VISIBLE_DEVICES=3"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "import os\n",
+    "import sys\n",
+    "import re\n",
+    "import collections\n",
+    "import functools\n",
+    "import requests, zipfile, io\n",
+    "import pickle\n",
+    "import copy\n",
+    "\n",
+    "import pandas\n",
+    "import numpy as np\n",
+    "import matplotlib\n",
+    "import matplotlib.pyplot as plt\n",
+    "import sklearn\n",
+    "import sklearn.decomposition\n",
+    "import sklearn.metrics\n",
+    "import networkx\n",
+    "\n",
+    "import torch\n",
+    "import torch.nn as nn\n",
+    "\n",
+    "lib_path = 'I:/code'\n",
+    "if not os.path.exists(lib_path):\n",
+    "  lib_path = '/media/6T/.tianle/.lib'\n",
+    "if not os.path.exists(lib_path):\n",
+    "  lib_path = '/projects/academic/azhang/tianlema/lib'\n",
+    "if os.path.exists(lib_path) and lib_path not in sys.path:\n",
+    "  sys.path.append(lib_path)\n",
+    "  \n",
+    "from dl.models.basic_models import *\n",
+    "from dl.utils.visualization.visualization import *\n",
+    "from dl.utils.outlier import *\n",
+    "from dl.utils.train import *\n",
+    "from autoencoder.autoencoder import *\n",
+    "from dl.utils.utils import get_overlap_samples, filter_clinical_dict, get_target_variable\n",
+    "from dl.utils.utils import get_shuffled_data, target_to_numpy\n",
+    "\n",
+    "%load_ext autoreload\n",
+    "%autoreload 2\n",
+    "\n",
+    "\n",
+    "use_gpu = True\n",
+    "if use_gpu and torch.cuda.is_available():\n",
+    "  device = torch.device('cuda')\n",
+    "  print('Using GPU:)')\n",
+    "else:\n",
+    "  device = torch.device('cpu')\n",
+    "  print('Using CPU:(')"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# neural net models include nn (mlp), resnet, densenet; another choice is ml (machine learning)\n",
+    "# model_type, dense, residual are dependent\n",
+    "model_type = 'resnet'\n",
+    "dense = False\n",
+    "residual = True\n",
+    "hidden_dim = [100, 100]\n",
+    "train_portion = 0.7\n",
+    "val_portion = 0.1\n",
+    "test_portion = 0.2\n",
+    "num_train_types = -1 # -1 means not used\n",
+    "num_val_types = -1\n",
+    "num_test_types = -1 # this will almost never be used \n",
+    "num_sets = 10\n",
+    "num_folds = 10 # no longer used anymore\n",
+    "sel_set_idx = 0\n",
+    "cv_type = 'instance-shuffle' # or 'group-shuffle'; cross validation shuffle method\n",
+    "sel_disease_types = 'all'\n",
+    "# The number of total samples and the numbers for each class in selected disease types must >=\n",
+    "min_num_samples_per_type_cls = [100, 0]\n",
+    "# if 'auto-search', will search for the file first; if not exist, then generate random data split\n",
+    "# and write to the file;\n",
+    "# if string other than 'auto-search' is provided, assume the string is a proper file name, \n",
+    "# and read the file;\n",
+    "# if False, will generate a random data split, but not write to file \n",
+    "# if True will generate a random data split, and write to file\n",
+    "predefined_sample_set_file = 'auto-search' \n",
+    "target_variable = 'PFI' # To do: target variable can be a list (partially handled)\n",
+    "target_variable_type = 'discrete' # or 'continuous' real numbers\n",
+    "target_variable_range = [0, 1]\n",
+    "data_type = ['gene', 'methy', 'rppa', 'mirna']\n",
+    "normal_transform_feature = True\n",
+    "additional_vars = []#['age_at_initial_pathologic_diagnosis', 'gender']\n",
+    "additional_var_types = []#['continuous', 'discrete']\n",
+    "additional_var_ranges = []#[[0, 100], ['MALE', 'FEMALE']]\n",
+    "randomize_labels = False\n",
+    "lr = 5e-4\n",
+    "weight_decay = 1e-4\n",
+    "num_epochs = 1000\n",
+    "reduce_every = 500\n",
+    "show_results_in_notebook = True"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Prepare data"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "result_folder = 'results'\n",
+    "data_split_idx_folder = f'{result_folder}/data_split_idx'\n",
+    "project_folder = '../../pan-can-atlas'\n",
+    "print_stats = True\n",
+    "if not os.path.exists(project_folder):\n",
+    "  project_folder = 'F:/TCGA/Pan-Cancer-Atlas'\n",
+    "filepath = f'{project_folder}/data/processed/combined2.pkl'\n",
+    "with open(filepath, 'rb') as f:\n",
+    "  data = pickle.load(f)\n",
+    "  patient_clinical = data['patient_clinical']\n",
+    "  feature_mat_dict = data['feature_mat_dict']\n",
+    "  feature_interaction_mat_dict = data['feature_interaction_mat_dict']\n",
+    "  feature_id_dict = data['feature_id_dict']\n",
+    "  aliquot_id_dict = data['aliquot_id_dict']\n",
+    "#   sel_patient_ids = data['sample_id_sel']\n",
+    "#   sample_idx_sel_dict = data['sample_idx_sel_dict']\n",
+    "#   for k, v in sample_idx_sel_dict.items():\n",
+    "#     assert [i[:12] for i in aliquot_id_dict[k][v]] == sel_patient_ids\n",
+    "\n",
+    "if print_stats:\n",
+    "  for k, v in feature_mat_dict.items():\n",
+    "    print(f'feature_mat: {k}, max={v.max():.3f}, min={v.min():.3f}, '\n",
+    "          f'mean={v.mean():.3f}, {np.mean(v>0):.3f}')  \n",
+    "  for k, v in feature_interaction_mat_dict.items():\n",
+    "    print(f'feature_interaction_mat: {k}, max={v.max():.3f}, min={v.min():.3f}, '\n",
+    "          f'mean={v.mean():.3f}, {np.mean(v>0):.3f}') \n",
+    "  for k, v in feature_id_dict.items():\n",
+    "    print(k, v.shape, v[0])\n",
+    "  for k, v in aliquot_id_dict.items():\n",
+    "    print(k, v.shape, v[0])"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# select samples with required clinical variables\n",
+    "clinical_dict = filter_clinical_dict(target_variable, target_variable_type=target_variable_type, \n",
+    "                                     target_variable_range=target_variable_range, \n",
+    "                                     clinical_dict=patient_clinical)\n",
+    "if len(additional_vars) > 0:\n",
+    "  clinical_dict = filter_clinical_dict(additional_vars, target_variable_type=additional_var_types, \n",
+    "                                       target_variable_range=additional_var_ranges, \n",
+    "                                       clinical_dict=clinical_dict)\n",
+    "\n",
+    "# select samples with feature matrix of given type(s)\n",
+    "if isinstance(data_type, str):\n",
+    "  sample_list = {s[:12] for s in aliquot_id_dict[data_type]}\n",
+    "  data_type_str = data_type\n",
+    "elif isinstance(data_type, (list, tuple)):\n",
+    "  sample_list = get_overlap_samples([aliquot_id_dict[dtype] for dtype in data_type], \n",
+    "                                    common_list=None, start=0, end=12, return_common_list=True)\n",
+    "  data_type_str = '-'.join(sorted(data_type))\n",
+    "else:\n",
+    "  raise ValueError(f'data_type must be str or list/tuple, but is {type(data_type)}')\n",
+    "sample_list = sample_list.intersection(clinical_dict)\n",
+    "\n",
+    "# select samples with given disease types\n",
+    "sel_disease_type_str = sel_disease_types # will be overwritten if it is a list\n",
+    "if isinstance(sel_disease_types, (list, tuple)):\n",
+    "  sample_list = [s for s in sample_list if clinical_dict[s]['type'] in sel_disease_types]\n",
+    "  sel_disease_type_str = '-'.join(sorted(sel_disease_types))\n",
+    "elif isinstance(sel_disease_types, str) and sel_disease_types!='all':\n",
+    "  sample_list = [s for s in sample_list if clinical_dict[s]['type'] == sel_disease_types]\n",
+    "else:\n",
+    "  assert sel_disease_types == 'all'\n",
+    " \n",
+    "# For classification tasks with given min_num_samples_per_type_cls,\n",
+    "# only keep disease types that have a minimal number of samples per type and per class\n",
+    "# Reflection: it might be better to use collections.defaultdict(list) to store samples in each type\n",
+    "type_cnt = collections.Counter([clinical_dict[s]['type'] for s in sample_list])\n",
+    "if sum(min_num_samples_per_type_cls)>0 and (target_variable_type=='discrete' \n",
+    "                                            or target_variable_type[0]=='discrete'):\n",
+    "  # the number of samples in each disease type >= min_num_samples_per_type_cls[0]\n",
+    "  type_cnt = {k: v for k, v in type_cnt.items() if v >= min_num_samples_per_type_cls[0]}\n",
+    "  disease_type_cnt = {}\n",
+    "  for k in type_cnt:\n",
+    "    # collections.Counter can accept generator\n",
+    "    cls_cnt = collections.Counter(clinical_dict[s][target_variable] \n",
+    "                                  if isinstance(target_variable, str) \n",
+    "                                  else clinical_dict[s][target_variable[0]] \n",
+    "                                  for s in sample_list if clinical_dict[s]['type']==k)\n",
+    "    if all([v >= min_num_samples_per_type_cls[1] for v in cls_cnt.values()]):\n",
+    "      # the number of samples in each class >= min_num_samples_per_type_cls[1]\n",
+    "      disease_type_cnt[k] = dict(cls_cnt)\n",
+    "      print(k, disease_type_cnt[k])\n",
+    "  sample_list = [s for s in sample_list if clinical_dict[s]['type'] in disease_type_cnt]\n",
+    "sel_patient_ids = sorted(sample_list)\n",
+    "print(f'Selected {len(sel_patient_ids)} patients from {len(disease_type_cnt)} disease_types')"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Split data into training, validation, and test sets"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "predefined_sample_set_filename = (target_variable if isinstance(target_variable,str) \n",
+    "                                else '-'.join(target_variable))\n",
+    "predefined_sample_set_filename += f'_{cv_type}'\n",
+    "if len(additional_vars) > 0:\n",
+    "  predefined_sample_set_filename += f\"_{'-'.join(sorted(additional_vars))}\"\n",
+    "\n",
+    "predefined_sample_set_filename += (f\"_{data_type_str}_{sel_disease_type_str}_\"\n",
+    "                                   f\"{'-'.join(map(str, min_num_samples_per_type_cls))}\")\n",
+    "predefined_sample_set_filename += f\"_{'-'.join(map(str, [train_portion, val_portion, test_portion]))}\"\n",
+    "if cv_type == 'group-shuffle' and num_train_types > 0:\n",
+    "  predefined_sample_set_filename += f\"_{'-'.join(map(str, [num_train_types, num_val_types, num_test_types]))}\"\n",
+    "predefined_sample_set_filename += f'_{num_sets}sets'\n",
+    "res_file = f\"{predefined_sample_set_filename}_{sel_set_idx}_{'-'.join(map(str, hidden_dim))}_{model_type}.pkl\"\n",
+    "predefined_sample_set_filename += '.pkl'\n",
+    "# This will be overwritten if predefined_sample_set_file == 'auto-search' or filepath, and the file exists\n",
+    "predefined_sample_sets = [get_shuffled_data(sel_patient_ids, clinical_dict, cv_type=cv_type, \n",
+    "                  instance_portions=[train_portion, val_portion, test_portion], \n",
+    "                  group_sizes=[num_train_types, num_val_types, num_test_types],\n",
+    "                  group_variable_name='type', seed=None, verbose=False) for i in range(num_sets)]\n",
+    "if predefined_sample_set_file == 'auto-search':\n",
+    "  if os.path.exists(f'{data_split_idx_folder}/{predefined_sample_set_filename}'):\n",
+    "    with open(f'{data_split_idx_folder}/{predefined_sample_set_filename}', 'rb') as f:\n",
+    "      print(f'Read predefined_sample_set_file: '\n",
+    "            f'{data_split_idx_folder}/{predefined_sample_set_filename}')\n",
+    "      tmp = pickle.load(f)\n",
+    "      # overwrite calculated predefined_sample_sets\n",
+    "      predefined_sample_sets = tmp['predefined_sample_sets']    \n",
+    "elif isinstance(predefined_sample_set_file, str): # but not 'auto-search'; assume it's a file name\n",
+    "  if os.path.exists(predefined_sample_set_file):\n",
+    "    with open(f'{data_split_idx_folder}/{predefined_sample_set_file}', 'rb') as f:\n",
+    "      print(f'Read predefined_sample_set_file: {data_split_idx_folder}/{predefined_sample_set_file}')\n",
+    "      tmp = pickle.load(f)\n",
+    "      predefined_sample_sets = tmp['predefined_sample_sets']\n",
+    "  else:\n",
+    "    raise ValueError(f'predefined_sample_set_file: {data_split_idx_folder}/{predefined_sample_set_file} does not exist!')\n",
+    "\n",
+    "if (not os.path.exists(f'{data_split_idx_folder}/{predefined_sample_set_filename}') \n",
+    "    and predefined_sample_set_file == 'auto-search') or predefined_sample_set_file is True:\n",
+    "  with open(f'{data_split_idx_folder}/{predefined_sample_set_filename}', 'wb') as f:\n",
+    "      print(f'Write predefined_sample_set_file: {data_split_idx_folder}/{predefined_sample_set_filename}')\n",
+    "      pickle.dump({'predefined_sample_sets': predefined_sample_sets}, f)\n",
+    "     \n",
+    "sel_patient_ids, idx_splits = predefined_sample_sets[sel_set_idx]\n",
+    "train_idx, val_idx, test_idx = idx_splits"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "if isinstance(data_type, str):\n",
+    "  sample_lists = [aliquot_id_dict[data_type]]\n",
+    "else:\n",
+    "  assert isinstance(data_type, (list, tuple))\n",
+    "  sample_lists = [aliquot_id_dict[dtype] for dtype in data_type]\n",
+    "idx_lists = get_overlap_samples(sample_lists=sample_lists, common_list=sel_patient_ids, \n",
+    "                    start=0, end=12, return_common_list=False)\n",
+    "sample_idx_sel_dict = {}\n",
+    "if isinstance(data_type, str):\n",
+    "  sample_idx_sel_dict = {data_type: idx_lists[0]}\n",
+    "else:\n",
+    "  sample_idx_sel_dict = {dtype: idx_list for dtype, idx_list in zip(data_type, idx_lists)}"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "if isinstance(data_type, str):\n",
+    "  print(f'Only use one data type: {data_type}')\n",
+    "  num_data_types = 1\n",
+    "  mat = feature_mat_dict[data_type][sample_idx_sel_dict[data_type]]\n",
+    "  # Data preprocessing: make each row have mean 0 and sd 1.\n",
+    "  x = (mat - mat.mean(axis=1, keepdims=True)) / mat.std(axis=1, keepdims=True)\n",
+    "  interaction_mat = feature_interaction_mat_dict[data_type]\n",
+    "  interaction_mat = torch.from_numpy(interaction_mat).float().to(device)\n",
+    "  # Normalize these interaction mat\n",
+    "  interaction_mat = interaction_mat / interaction_mat.norm()\n",
+    "else:\n",
+    "  mat = []\n",
+    "  interaction_mats = []\n",
+    "  in_dims = []\n",
+    "  num_data_types = len(data_type)\n",
+    "  # do not handle the special case of [data_type] to avoid too much code complexity\n",
+    "  assert num_data_types > 1 \n",
+    "  for dtype in data_type: # multiple data types\n",
+    "    m = feature_mat_dict[dtype][sample_idx_sel_dict[dtype]]\n",
+    "    #When there are multiple data types, make sure each type is normalized to have mean 0 and std 1\n",
+    "    m = (m - m.mean(axis=1, keepdims=True)) / m.std(axis=1, keepdims=True)\n",
+    "    mat.append(m)\n",
+    "    in_dims.append(m.shape[1])\n",
+    "    # For neural network model graph laplacian regularizer\n",
+    "    interaction_mat = feature_interaction_mat_dict[dtype]\n",
+    "    interaction_mat = torch.from_numpy(interaction_mat).float().to(device)\n",
+    "    # Normalize these interaction mat\n",
+    "    interaction_mat = interaction_mat / interaction_mat.norm()\n",
+    "    interaction_mats.append(interaction_mat)\n",
+    "    print(f'{dtype}: {m.shape}; '\n",
+    "          f'interaction_mat: mean={interaction_mat.mean().item():2f}, '\n",
+    "          f'std={interaction_mat.std().item():2f}, {interaction_mat.shape[0]}')\n",
+    "  # Later interaction_mat will be passed to Loss_feature_interaction\n",
+    "  interaction_mat = interaction_mats\n",
+    "  mat = np.concatenate(mat, axis=1)\n",
+    "  # For machine learing methods that use concatenated features without knowing underlying views,\n",
+    "  # it might be good to make each row have mean 0 and sd 1.\n",
+    "  x = (mat - mat.mean(axis=1, keepdims=True)) / mat.std(axis=1, keepdims=True)\n",
+    "\n",
+    "if normal_transform_feature:\n",
+    "  X = x\n",
+    "else:\n",
+    "  X = mat"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "y_targets = get_target_variable(target_variable, clinical_dict, sel_patient_ids)\n",
+    "y_true = target_to_numpy(y_targets, target_variable_type, target_variable_range)\n",
+    "if len(additional_vars) > 0:\n",
+    "  additional_variables = get_target_variable(additional_vars, clinical_dict, sel_patient_ids)\n",
+    "  # to do handle additional variables such as age and gender"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### To do: handle multiple inputs, multiple targets"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# sklearn classifiers also accept torch.Tensor\n",
+    "X = torch.tensor(X).float().to(device)\n",
+    "y_true = torch.tensor(y_true).long().to(device)\n",
+    "num_cls = len(torch.unique(y_true))\n",
+    "\n",
+    "x_train, y_train = X[train_idx], y_true[train_idx]\n",
+    "x_val, y_val = X[val_idx], y_true[val_idx]\n",
+    "x_test, y_test = X[test_idx], y_true[test_idx]\n",
+    "print(x_train.shape, x_val.shape, x_test.shape, y_train.shape, y_val.shape, y_test.shape)\n",
+    "\n",
+    "label_prob_train = get_label_prob(y_train, verbose=False)\n",
+    "label_probs = [label_prob_train]\n",
+    "if len(y_val)>0:\n",
+    "  label_prob_val = get_label_prob(y_val, verbose=False)\n",
+    "  assert len(label_prob_train) == len(label_prob_val)\n",
+    "  label_probs.append(label_prob_val)\n",
+    "if len(y_test)>0:\n",
+    "  label_prob_test = get_label_prob(y_test, verbose=False)\n",
+    "  assert len(label_prob_train) == len(label_prob_test)\n",
+    "  label_probs.append(label_prob_test)\n",
+    "if isinstance(label_probs, torch.Tensor):\n",
+    "  print('label distribution:\\n', torch.stack(label_probs, dim=1))\n",
+    "else:\n",
+    "  print('label distribution:\\n', np.stack(label_probs, axis=1))"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Optionally randomize true class labels"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {
+    "scrolled": true
+   },
+   "outputs": [],
+   "source": [
+    "if randomize_labels:\n",
+    "  print('Randomize class labels!')\n",
+    "  y_train = torch.multinomial(label_prob_train, len(y_train), replacement=True)\n",
+    "  if len(y_val) > 0:\n",
+    "    y_val = torch.multinomial(label_prob_val, len(y_val), replacement=True)\n",
+    "  if len(y_test) > 0:\n",
+    "    y_test = torch.multinomial(label_prob_test, len(y_test), replacement=True)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Sklearn classifiers"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "from sklearn.neighbors import KNeighborsClassifier\n",
+    "from sklearn.naive_bayes import GaussianNB\n",
+    "from sklearn.tree import DecisionTreeClassifier\n",
+    "from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier\n",
+    "model_names = ['kNN', 'Naive Bayes', 'SVM', 'Decision Tree', 'Random Forest', 'AdaBoost']\n",
+    "split_names = ['train', 'val', 'test']\n",
+    "metric_names = ['acc', 'precision', 'recall', 'f1_score', 'adjusted_mutual_info', 'auc', \n",
+    "                'average_precision']\n",
+    "metric_all = []\n",
+    "confusion_mat_all = []\n",
+    "loss_his_all = [] # loss_his_all and acc_his_all are empty for sklearn classifiers\n",
+    "acc_his_all = []\n",
+    "classifiers = [KNeighborsClassifier(5), \n",
+    "               GaussianNB(), \n",
+    "               sklearn.svm.SVC(kernel=\"linear\", C=0.025),\n",
+    "               DecisionTreeClassifier(max_depth=5),\n",
+    "               RandomForestClassifier(max_depth=5, n_estimators=10),\n",
+    "               AdaBoostClassifier()\n",
+    "              ]"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "assert train_portion > 0 and val_portion > 0 and test_portion > 0 # Assume there are 3 splits\n",
+    "for name, classifier in zip(model_names, classifiers):\n",
+    "  print(name)\n",
+    "  classifier.fit(x_train, y_train)\n",
+    "  metric = []\n",
+    "  for x_, y_ in zip([x_train, x_val, x_test], [y_train, y_val, y_test]):\n",
+    "    if name == 'SVM':\n",
+    "      y_score = classifier.decision_function(x_) # sklearn.svm.SVC does not have predict_proba\n",
+    "    else:\n",
+    "      y_score = classifier.predict_proba(x_)\n",
+    "    metric.append(eval_classification(y_true=y_, y_pred=y_score, \n",
+    "                                      average='weighted', verbose=True))\n",
+    "  metric_all.append([v[0] for v in metric])\n",
+    "  confusion_mat_all.append([v[1] for v in metric])  "
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "with open(f'{result_folder}/{res_file}', 'wb') as f:\n",
+    "  print(f'Write result to file {result_folder}/{res_file}')\n",
+    "  pickle.dump({'loss_his_all': loss_his_all,\n",
+    "               'acc_his_all': acc_his_all,\n",
+    "               'metric_all': metric_all,\n",
+    "               'confusion_mat_all': confusion_mat_all,\n",
+    "               'model_names': model_names,\n",
+    "               'split_names': split_names,\n",
+    "               'metric_names': metric_names\n",
+    "              }, f)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Neural network models that are included in another notebook"
+   ]
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.6.5"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}