[4807fa]: / dl / utils / utils.py

Download this file

575 lines (503 with data), 24.6 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
import os
import functools
import itertools
import collections
import numpy as np
import pandas
from PIL import Image
import sklearn.metrics
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils import data
from .outlier import normalization
from .train import get_label_prob
def discrete_to_id(targets, start=0, sort=True, complex_object=False):
"""Change discrete variable targets to numeric values
Args:
targets: 1-d torch.Tensor or np.array, or a list
start: the starting index for the first elements
sort: sort the unique value, so that the 'smaller' values have smaller indices
complex_object: input is not numeric, but complex objects, e.g., tuple
Returns:
target_ids: torch.Tensor or np.array with integer elements starting from start(=0 default)
cls_id_dict: a dictionary mapping variables to their numeric ids
"""
if complex_object:
unique_targets = sorted(collections.Counter(targets))
else:
if isinstance(targets, torch.Tensor):
targets = targets.cpu().detach().numpy()
else:
targets = np.array(targets) # if targets is already an np.array, then it does nothing
unique_targets = np.unique(targets)
if sort:
unique_targets = np.sort(unique_targets)
cls_id_dict = {v: i+start for i, v in enumerate(unique_targets)}
target_ids = np.array([cls_id_dict[v] for v in targets])
if isinstance(targets, torch.Tensor):
target_ids = targets.new_tensor(target_ids)
return target_ids, cls_id_dict
def get_f1_score(m, average='weighted', verbose=False):
"""Given a confusion matrix for binary classification,
calculate accuracy, precision, recall, F1 measure
Args:
m: confusion mat for binary classification
average: if 'weighted': calculate metrics for each label, then get weighted average (weights are supports)
if 'average': calculate average metrics for each label
see http://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html
verbose: if True, print result
"""
def cal_f1(precision, recall):
if precision + recall == 0:
print('Both precision and recall are zero')
return 0
return 2*precision*recall / (precision+recall)
m = np.array(m)
t0 = m[0,0] + m[0,1]
t1 = m[1,0] + m[1,1]
p0 = m[0,0] + m[1,0]
p1 = m[0,1] + m[1,1]
prec0 = m[0,0] / p0
prec1 = m[1,1] / p1
recall0 = m[0,0] / t0
recall1 = m[1,1] / t1
f1_0 = cal_f1(prec0, recall0)
f1_1 = cal_f1(prec1, recall1)
if average == 'macro':
w0 = 0.5
w1 = 0.5
elif average == 'weighted':
w0 = t0 / (t0+t1)
w1 = t1 / (t0+t1)
prec = prec0*w0 + prec1*w1
recall = recall0*w0 + recall1*w1
f1 = f1_0*w0 + f1_1*w1
acc = (m[0,0] + m[1,1]) / (t0+t1)
if verbose:
print(f'prec0={prec0}, recall0={recall0}, f1_0={f1_0}\n'
f'prec1={prec1}, recall1={recall1}, f1_1={f1_1}')
return acc, prec, recall, f1
def dist(params1, params2=None, dist_fn=torch.norm): #pylint disable=no-member
"""Calculate the norm of params1 or the distance between params1 and params2;
Common usage calculate the distance between two model state_dicts.
Args:
params1: dictionary; with each item a torch.Tensor
params2: if not None, should have the same structure (data types and dimensions) as params1
"""
if params2 is None:
return dist_fn(torch.Tensor([dist_fn(params1[k]) for k in params1]))
d = torch.Tensor([dist_fn(params1[k] - params2[k]) for k in params1])
return dist_fn(d)
class AverageMeter(object):
def __init__(self):
self._reset()
def _reset(self):
self.val = 0
self.sum = 0
self.cnt = 0
self.avg = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.cnt += n
self.avg = self.sum / self.cnt
def pil_loader(path, format = 'RGB'):
with open(path, 'rb') as f:
with Image.open(f) as img:
return img.convert(format)
class ImageFolder(data.Dataset):
def __init__(self, root, imgs, transform = None, target_transform = None,
loader = pil_loader, is_test = False):
self.root = root
self.imgs = imgs
self.transform = transform
self.target_transform = target_transform
self.loader = pil_loader
self.is_test = is_test
def __getitem__(self, idx):
if self.is_test:
img = self.imgs[idx]
else:
img, target = self.imgs[idx]
img = self.loader(os.path.join(self.root, img))
if self.transform is not None:
img = self.transform(img)
if not self.is_test and self.target_transform is not None:
target = self.target_transform(target)
if self.is_test:
return img
else:
return img, target
def __len__(self):
return len(self.imgs)
def check_acc(output, target, topk=(1,)):
if isinstance(output, tuple):
output = output[0]
maxk = max(topk)
_, pred = output.topk(maxk, 1)
res = []
for k in topk:
acc = (pred.eq(target.contiguous().view(-1,1).expand(pred.size()))[:, :k]
.float().contiguous().view(-1).sum(0))
acc.mul_(100 / target.size(0))
res.append(acc)
return res
### Mainly developed for TCGA data analysis
def select_samples(mat, aliquot_ids, feature_ids, patient_clinical=None, clinical_variable='PFI',
sample_type='01', drop_duplicates=True, remove_na=True):
"""Select samples with given sample_type ('01');
if drop_duplicates is True (by default), remove technical duplicates;
and if remove_na is True (default), remove features that have NA;
If patient_clinical is not None, further filter out samples with clinical_variable being NA
"""
mat = pandas.DataFrame(mat, columns=feature_ids) # Use pandas to drop NA
# Select samples with sample_type(='01')
idx = np.array([[i,s[:12]] for i, s in enumerate(aliquot_ids) if s[13:15]==sample_type])
# Remove technical duplicate
if drop_duplicates:
idx = pandas.DataFrame(idx).drop_duplicates(subset=[1]).values
mat = mat.iloc[idx[:,0].astype(int)]
aliquot_ids = aliquot_ids[idx[:,0].astype(int)]
if remove_na:
# Remove features that have NA values
mat = mat.dropna(axis=1)
feature_ids = mat.columns.values
mat = mat.values
if patient_clinical is not None:
idx = [s[:12] in patient_clinical and not np.isnan(patient_clinical[s[:12]][clinical_variable])
for s in aliquot_ids]
mat = mat[idx]
aliquot_ids = aliquot_ids[idx]
return mat, aliquot_ids, feature_ids
def get_feature_feature_mat(feature_ids, gene_ids, feature_gene_adj, gene_gene_adj,
max_score=1000):
"""Calculate feature-feature interaction matrix based on their mapping to genes
and gene-gene interactions:
feature_feature = feature_gene * gene_gene * feature_gene^T (transpose)
Args:
feature_ids: np.array([feature_names]), dict {id: feature_name}, or {feature_name: id}
gene_ids: np.array([gene_names]), dict {id: gene_name}, or {gene_name: id}
feature_gene_adj: np.array([[feature_name, gene_name, score]])
with rows corresponding to features and columns genes;
or (Deprecated) a list (gene) of lists of feature_ids.
Note this is different from np.array input; len(feature_gene_adj) = len(gene_ids)
gene_gene_adj: an np.array. Each row is (gene_name1, gene_name2, score)
max_score: default 1000. Normalize confidence scores in gene_gene_adj to be in [0, 1]
Returns:
feature_feature_mat: np.array of shape (len(feature_ids), len(feature_ids))
"""
def check_input_ids(ids):
if isinstance(ids, np.ndarray) or isinstance(ids, list):
ids = {v: i for i, v in enumerate(ids)} # Map feature names to indices starting from 0
elif isinstance(ids, dict):
if sorted(ids) == list(range(len(ids))):
# make sure it follows format {feature_name: id}
ids = {v: k for k, v in ids.items()}
else:
raise ValueError(f'The input ids should be a list/np.ndarray/dictionary, '
'but is {type(feature_ids)}')
return ids
feature_ids = check_input_ids(feature_ids)
gene_ids = check_input_ids(gene_ids)
idx = []
if isinstance(feature_gene_adj, list): # Assume feature_gene_adj is a list; this is deprecated
for i, v in enumerate(feature_gene_adj):
for j in v:
idx.append([j, i, 1])
elif isinstance(feature_gene_adj, np.ndarray) and feature_gene_adj.shape[1] == 3:
for v in feature_gene_adj:
if v[0] in feature_ids and v[1] in gene_ids:
idx.append([feature_ids[v[0]], gene_ids[v[1]], float(v[2])])
else:
raise ValueError('feature_gene_adj should be an np.ndarray of shape (N, 3) '
'or a list of lists (deprecated).')
idx = np.array(idx).T
feature_gene_mat = torch.sparse.FloatTensor(torch.tensor(idx[:2]).long(),
torch.tensor(idx[2]).float(),
(len(feature_ids), len(gene_ids)))
# Extract a subnetwork from gene_gene_adj
# Assume there is no self-loop in gene_gene_adj
# and it contains two records for each undirected edge
idx = []
for v in gene_gene_adj:
if v[0] in gene_ids and v[1] in gene_ids:
idx.append([gene_ids[v[0]], gene_ids[v[1]], v[2]/max_score])
# Add self-loops
for i in range(len(gene_ids)):
idx.append([i, i, 1.])
idx = np.array(idx).T
gene_gene_mat = torch.sparse.FloatTensor(torch.tensor(idx[:2]).long(),
torch.tensor(idx[2]).float(),
(len(gene_ids), len(gene_ids)))
feature_feature_mat = feature_gene_mat.mm(gene_gene_mat.mm(feature_gene_mat.to_dense().t()))
return feature_feature_mat.numpy()
def get_overlap_samples(sample_lists, common_list=None, start=0, end=12, return_common_list=False):
"""Given a list of aliquot_id lists, find the common sample ids
Args:
sample_lists: a iterable of sample (aliquot) id lists
common_list: if None (default), find the interaction of sample_lists;
if provided, it should not be a set, because iterating over a set can be different from different runs
start: default 0; assume sample ids are strings;
when finding overlapping samples, only consider a specific range [start, end)
end: default 12, for TCGA BCR barcode
return_common_list: if True, return a set containing common list for backward compatiablity,
returns a sorted common list is a better option
Returns:
np.array of shape (len(sample_lists), len(common_list))
"""
sample_lists = [[s_id[start:end] for s_id in sample_list] for sample_list in sample_lists]
if common_list is None:
common_list = functools.reduce(lambda x,y: set(x).intersection(y), sample_lists)
if return_common_list:
return common_list
common_list = sorted(common_list) # iterate over set can vary from different runs
for s in sample_lists: # make sure every list in sample_lists contains all elements in common_list
assert len(set(common_list).difference(s)) == 0
idx_lists = np.array([[sample_list.index(s_id) for s_id in common_list]
for sample_list in sample_lists])
return idx_lists
# Select samples that have target variable(s) is in clinical file
def filter_clinical_dict(target_variable, target_variable_type, target_variable_range,
clinical_dict):
"""Select patients with given target variable, its type and range in clinical data
To save computation time, I assume all target variable(s) names are in clinical_dict without verification;
Args:
target_variable: str or a list of strings
target_variable_type: 'discrete' or 'continuous' or a list of 'discrete' or 'continuous'
target_variable_range: a list of values for 'continous' type, it is [lower_bound, upper_bound]
or a list of list; target_variable, target_variable_type, target_variable_range must match
clinical_dict: a dictionary of dictinaries;
first-level keys: patient ids, second-level keys: variable names
Returns:
clinical_dict: newly constructed clinical_dict with all patients having target_variables
Examples:
target_variable = ['PFI', 'OS.time']
target_variable_type = ['discrete', 'continuous']
target_variable_range = [[0, 1], [0, float('Inf')]]
clinical_dict = filter_clinical_dict(target_variable, target_variable_type, target_variable_range,
patient_clinical)
assert sorted([k for k, v in patient_clinical.items() if v['PFI'] in [0,1] and not np.isnan(v['OS.time'])]) ==
sorted(clinical_dict.keys())
"""
if isinstance(target_variable, str):
if target_variable_type == 'discrete':
clinical_dict = {p:v for p, v in clinical_dict.items()
if v[target_variable] in target_variable_range}
elif target_variable_type == 'continuous':
clinical_dict = {p:v for p, v in clinical_dict.items()
if v[target_variable] >= target_variable_range[0]
and v[target_variable] <= target_variable_range[1]}
elif isinstance(target_variable, (list, tuple)):
# Brilliant recursion
for tar_var, tar_var_type, tar_var_range in zip(target_variable, target_variable_type, target_variable_range):
clinical_dict = filter_clinical_dict(tar_var, tar_var_type, tar_var_range, clinical_dict)
return clinical_dict
def get_target_variable(target_variable, clinical_dict, sel_patient_ids):
"""Extract target_variable from clinical_dict for sel_patient_ids
If target_variable is a single str, it is only one line of code
If target_variable is a list, recursively call itself and return a list of target variables
Assume all sel_patient_ids have target_variable in clinical_dict
"""
if isinstance(target_variable, str):
return [clinical_dict[s][target_variable] for s in sel_patient_ids]
elif isinstance(target_variable, (list, str)):
return [[clinical_dict[s][tar_var] for s in sel_patient_ids] for tar_var in target_variable]
def normalize_continuous_variable(y_targets, target_variable_type, transform=True, forced=False,
threshold=10, rm_outlier=True, whis=1.5, only_positive=True, max_val=1):
"""Normalize continuous variable(s)
If a variable is 'continuous', then call normalization() in outlier.py
Args:
y_targets: a np.array or a list of np.array
target_variable_type: can be a string: 'continous' or 'discrete' (do nothing but return the input)
or a list of strings
transform, forced, threshold, rm_outlier, whis, only_positive, max_val are all passed to normalization
"""
if isinstance(target_variable_type, str):
if target_variable_type=='continuous':
y_targets = normalization(y_targets, transform=transform, forced=forced, threshold=threshold,
rm_outlier=rm_outlier, whis=whis, only_positive=only_positive,
max_val=max_val, diagonal=False, symmetric=False)
return y_targets
elif isinstance(target_variable_type, list):
return [normalize_continuous_variable(y, var_type, transform=transform, forced=forced,
threshold=threshold, rm_outlier=rm_outlier, whis=whis, only_positive=only_positive,
max_val=max_val) for y, var_type in zip(y_targets, target_variable_type)]
else:
raise ValueError(f'target_variable_type should be a str or list of strs, but is {target_variable_type}')
def get_label_distribution(ys, check_num_cls=True):
"""Get label distributions for a list of labels
Args:
ys: an iterable (e.g., list) of labels (1-d numpy.array or torch.Tensor);
the most common usage is get_label_distribution([y_train, y_val, y_test])
check_num_cls: only if it is True, ensure that each list of labels will have the same number of classes
and also print out the message
Returns:
label_prob: a list of label distributions (multinomial);
"""
num_cls = 0
label_probs = []
for i, y in enumerate(ys):
if len(y)>0:
label_prob = get_label_prob(y, verbose=False)
label_probs.append(label_prob)
if check_num_cls:
if num_cls > 0:
assert num_cls == len(label_probs[-1]), f'{i}: {num_cls} != {len(label_probs[-1])}'
else:
num_cls = len(label_probs[-1])
else:
label_probs.append([])
if check_num_cls:
if isinstance(label_probs, torch.Tensor):
print('label distribution:\n', torch.stack(label_probs, dim=1))
else:
print('label distribution:\n', np.stack(label_probs, axis=1))
return label_probs
def get_shuffled_data(sel_patient_ids, clinical_dict, cv_type, instance_portions, group_sizes,
group_variable_name, seed=None, verbose=True):
"""Shuffle sel_patient_ids and split them into multiple splits,
in most cases, train, val and test sets;
Args:
sel_patient_ids: a list of object (patient) ids
clinical_dict: a dictionary of dictionaries;
first-level keys: object ids; second-level keys: attribute names;
cv_type: either 'group-shuffle' or 'instance-shuffle'; in most cases:
if 'group-shuffle', split groups into train, val and test set according to group_sizes or
implicitly instance_portions;
if 'instance-shuffle': split based on instance_portions
instance_portions: a list of floats; the proportions of samples in each split;
when cv_type=='group-shuffle' and group_sizes is given, then instance_portions is not used
group_sizes: the number of groups in each split; only used when cv_type=='group-shuffle'
group_variable_name: the attribute name for group information
Returns:
sel_patient_ids: shuffled object ids
idx_splits: a list of indices, e.g., [train_idx, val_idx, test_idx]
sel_patient_ids[train_idx] will get patient ids for training
"""
np.random.seed(seed)
sel_patient_ids = np.random.permutation(sel_patient_ids)
num_samples = len(sel_patient_ids)
idx_splits = []
if cv_type == 'group-shuffle':
# for my TCGA project, I used disease types as groups; thus the variable name is named 'disease_types'
disease_types = sorted({clinical_dict[s][group_variable_name] for s in sel_patient_ids})
num_disease_types = len(disease_types)
np.random.shuffle(disease_types)
type_splits = []
cnt = 0
for i in range(len(group_sizes)-1):
if group_sizes[i] < 0:
# use instance_portion as group portions
assert sum(instance_portions) == 1
group_sizes[i] = round(instance_portions[i] * num_disease_types)
type_splits.append(disease_types[cnt:cnt+group_sizes[i]])
cnt = cnt+group_sizes[i]
# do not use i to enumerate sel_patient_ids because i is used
idx_splits.append([j for j, s in enumerate(sel_patient_ids)
if clinical_dict[s][group_variable_name] in type_splits[i]])
# process the last split
if group_sizes[-1] >=0: # for most of time, set group_sizes[-1] = num_test_types = -1
# almost never set group_sizes[-1] = 0, which will be useless
assert group_sizes[-1] == num_disease_types - sum(group_sizes[:-1])
if cnt == len(disease_types):
print('The last group is empty, thus not included')
else:
type_splits.append(disease_types[cnt:])
idx_splits.append([i for i, s in enumerate(sel_patient_ids)
if clinical_dict[s][group_variable_name] in type_splits[-1]])
elif cv_type == 'instance-shuffle':
# because sel_patient_ids has already been shuffled, we do not need to shuffle indices
cnt = 0
assert sum(instance_portions) == 1
for i in range(len(instance_portions)-1):
n = round(instance_portions[i]*num_samples)
idx_splits.append(list(range(cnt, cnt+n)))
cnt = cnt + n
# process the last split
if cnt == num_samples:
# this can rarely happen
print('The last split is empty, thus not included')
else:
idx_splits.append(list(range(cnt, num_samples)))
def get_type_cnt_msg(p_ids):
"""For a list p_ids, prepare group statistics for printing
"""
cnt_dict = dict(collections.Counter([clinical_dict[p_id][group_variable_name]
for p_id in p_ids]))
return f'{len(cnt_dict)} groups: {cnt_dict}'
if verbose:
msg = f'{cv_type}: \n'
msg += '\n'.join([f'split {i}: {len(v)} samples ({len(v)/num_samples:.2f}), '
f'{get_type_cnt_msg(sel_patient_ids[v])}'
for i, v in enumerate(idx_splits)])
print(msg)
return sel_patient_ids, idx_splits
def target_to_numpy(y_targets, target_variable_type, target_variable_range):
"""y_targets is a list or a list of lists; transform it to numpy array
For a discrete variable, generate numerical class labels from 0;
for a continous variable, simply call np.array(y_targets);
use recusion to handle a list of target variables
Args:
y_targets: a list of objects (strings/numbers, must be comparable) or lists
target_variable_type: a string or a list of string ('discrete' or 'continous')
target_variable_range: only used for sanity check for discrete variables
Returns:
y_true: a numpy array or a list of numpy arrays of type either float or int
"""
if isinstance(target_variable_type, str):
y_true = np.array(y_targets)
if target_variable_type == 'discrete':
unique_cls = np.unique(y_true)
num_cls = len(unique_cls)
if sorted(unique_cls) != sorted(target_variable_range):
print(f'unique_cls: {unique_cls} !=\ntarget_variable_range {target_variable_range}')
cls_idx_dict = {p.item(): i for i, p in enumerate(sorted(unique_cls))}
y_true = np.array([cls_idx_dict[i.item()] for i in y_true])
print(f'Changed class labels for the model: {cls_idx_dict}')
elif isinstance(target_variable_type, (list, tuple)):
y_true = [target_to_numpy(y, tar_var_type, tar_var_range)
for y, tar_var_type, tar_var_range in
zip(y_targets, target_variable_type, target_variable_range)]
else:
raise ValueError(f'target_variable_type must be str, list or tuple, '
f'but is {type(target_variable_type)}')
return y_true
def get_mi_acc(xs, y_true, var_names, var_name_length=35):
"""Get mutual information (MI), adjusted MI, the maximal acc from Bayes classifier
for a list of discrete predictors xs and target y_true
For all combinations of xs calculate MI, Adj_MI, and Bayes_ACC
Args:
xs: a list of tensors or numpy arrays
y_true: a tensor or numpy array
Returns:
a list of dictionaries with key being the variable name
"""
if isinstance(xs[0], torch.Tensor):
xs = [x.cpu().detach().numpy() for x in xs]
if isinstance(y_true, torch.Tensor):
y_true = y_true.cpu().detach().numpy()
result = []
print('{:^{var_name_length}}\t{:^5}\t{:^6}\t{:^9}'.format('Variable', 'MI', 'Adj_MI', 'Bayes_ACC',
var_name_length=var_name_length))
for i, l in enumerate(itertools.chain.from_iterable(itertools.combinations(range(len(xs)), r)
for r in range(1, 1+len(xs)))):
if len(l) == 1:
new_x = xs[l[0]]
msg = f'{var_names[i]:^{var_name_length}}\t'
else: # len(l) > 1
new_x = [tuple([v.item() for v in s]) for s in zip(*[xs[j] for j in l])]
new_x = discrete_to_id(new_x, complex_object=True)[0]
msg = f'{"-".join(map(str, l)):^{var_name_length}}\t'
mi = sklearn.metrics.mutual_info_score(y_true, new_x)
adj_mi = sklearn.metrics.adjusted_mutual_info_score(y_true, new_x)
bayes_acc = (sklearn.metrics.confusion_matrix(y_true, new_x).max(axis=0).sum() / len(y_true))
result.append({msg: [mi, adj_mi, bayes_acc]})
msg += f'{mi:^5.3f}\t{adj_mi:^6.3f}\t{bayes_acc:^9.3f}'
print(msg)
return result
# p1 = sklearn.metrics.confusion_matrix(y_true.numpy(), new_x)[:2].reshape(-1)
# p2 = (np.bincount(y_true.numpy())[:,None] * np.bincount(new_x)).reshape(-1)
# p = torch.distributions.categorical.Categorical(torch.tensor(p1, dtype=torch.float))
# q = torch.distributions.categorical.Categorical(torch.tensor(p2, dtype=torch.float))
# torch.distributions.kl.kl_divergence(p,q)