[4807fa]: / dl / models / transformer.py

Download this file

326 lines (301 with data), 13.0 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
import numpy as np
import torch
import torch.nn as nn
from torch.autograd import Variable
if torch.cuda.is_available():
dtype = {'float': torch.cuda.FloatTensor, 'long': torch.cuda.LongTensor, 'byte': torch.cuda.ByteTensor}
else:
dtype = {'float': torch.FloatTensor, 'long': torch.LongTensor, 'byte': torch.ByteTensor}
class MultiheadAttention(nn.Module):
"""
"""
def __init__(self, in_dim, out_dim, key_dim, value_dim, num_heads=1, mask=False,
query_in_dim=None, knn=None):
super(MultiheadAttention, self).__init__()
self.key_dim = key_dim
self.keys = nn.ModuleList([nn.Linear(in_dim, key_dim) for i in range(num_heads)])
if query_in_dim is not None:
self.keys_query = nn.ModuleList([nn.Linear(query_in_dim, key_dim)
for i in range(num_heads)])
self.values = nn.ModuleList([nn.Linear(in_dim, value_dim) for i in range(num_heads)])
self.out = nn.Linear(value_dim*num_heads, out_dim)
self.mask = mask
self.knn = knn
def forward(self, x, q=None, return_graph=False):
y = []
if return_graph:
graph = []
if q is not None:
#assert self.knn is None or self.knn <= x.size(-2) # found bug here, not clear why yet
size_x = x.size()
size_q = q.size()
x = x.contiguous().view(size_x[0], -1, size_x[-1])
q = q.contiguous().view(size_q[0], -1, size_q[-1])
self.mask = False
for i, (K, V) in enumerate(zip(self.keys, self.values)):
key = K(x)
value = V(x)
if q is None:
query = key
else:
if hasattr(self, 'keys_query'):
query = self.keys_query[i](q)
else:
query = K(q)
att_unnorm = (query.unsqueeze(-2)*key.unsqueeze(-3)).sum(-1) / np.sqrt(self.key_dim)
if return_graph:
graph.append(nn.functional.softmax(att_unnorm, dim=-1))
if self.mask: # mask right side; useful for decoder with sequential output
seq_len = att_unnorm.size(-2)
if att_unnorm.dim() == 3:
for i in range(seq_len-1):
att_unnorm[:, i, (i+1):] = float('-inf')
elif att_unnorm.dim() == 4:
for i in range(seq_len-1):
att_unnorm[:, :, i, (i+1):] = float('-inf')
else:
raise ValueError('Expect x.dim() <= 4, but x.dim() = {0}'.format(x.dim()))
if isinstance(self.knn, int):
self.knn = min(self.knn, att_unnorm.size(-1))
att_topk, idx = att_unnorm.topk(self.knn, dim=-1)
att_ = Variable(torch.zeros(att_unnorm.size()).fill_(float('-inf')).type(dtype['float']))
att_.scatter_(-1, idx, att_topk)
att_unnorm = att_
att = nn.functional.softmax(att_unnorm, dim=-1)
# tricky
cur_y = (att.unsqueeze(-1) * value.unsqueeze(-3)).sum(-2)
if q is not None:
cur_y = cur_y.contiguous().view(*size_q[:-1], cur_y.size(-1))
y.append(cur_y)
y = torch.cat(y, -1)
y = self.out(y)
if return_graph:
graph = torch.stack(graph).mean(0)
return y, graph
return y
class EncoderAttention(nn.Module):
"""
"""
def __init__(self, in_dim, out_dim, key_dim, value_dim, fc_dim, num_heads=1, residual=True,
normalization=None, nonlinearity=nn.ReLU(), mask=False, query_in_dim=None, knn=None):
super(EncoderAttention, self).__init__()
self.attention = MultiheadAttention(in_dim, out_dim, key_dim, value_dim, num_heads, mask=mask,
query_in_dim=query_in_dim, knn=knn)
self.residual = residual
self.normalization = normalization
self.fc = nn.Sequential(nn.Linear(out_dim, fc_dim),
nonlinearity,
nn.Linear(fc_dim, out_dim))
def forward(self, x, q=None, return_graph=False):
if return_graph:
out, graph = self.attention(x, q, return_graph=True)
else:
out = self.attention(x, q)
if self.residual:
out += x
if isinstance(self.normalization, nn.Module):
out = self.normalization(out)
x = self.fc(out)
if self.residual:
x += out
if isinstance(self.normalization, nn.Module):
out = self.normalization(x)
if return_graph:
return out, graph
return out
class DecoderAttention(nn.Module):
"""
"""
def __init__(self, in_dim, out_dim, key_dim, value_dim, fc_dim, num_heads=1, residual=True,
normalization=None, nonlinearity=nn.ReLU(), mask=True, query_key=False, knn=None):
super(DecoderAttention, self).__init__()
if residual:
assert in_dim == out_dim
self.attention_mask = MultiheadAttention(in_dim, out_dim, key_dim, value_dim, num_heads, mask=mask, knn=knn)
self.attention_encoder = MultiheadAttention(in_dim, out_dim, key_dim, value_dim, num_heads,
mask=False,
query_in_dim=out_dim if query_key else None, knn=knn)
self.residual = residual
self.normalization = normalization
self.fc = nn.Sequential(nn.Linear(out_dim, fc_dim),
nonlinearity,
nn.Linear(fc_dim, out_dim))
def forward(self, x, input, return_graph=False):
if return_graph:
out, graph = self.attention_mask(x, return_graph=True)
else:
out = self.attention_mask(x)
if self.residual:
out = out + x
if isinstance(self.normalization, nn.Module):
out = self.normalization(out)
x = self.attention_encoder(input, out)
if self.residual:
out = out + x
if isinstance(self.normalization, nn.Module):
out = self.normalization(out)
x = self.fc(out)
if self.residual:
x = x + out
if isinstance(self.normalization, nn.Module):
out = self.normalization(x)
if return_graph:
return out, graph
return out
def get_uniq_topk(rank, history):
res = []
if history is None:
res = rank[:, 0]
history = rank[:, :1]
else:
for r, h in zip(rank.data, history.data):
for i in r:
if i in h:
continue
else:
res.append(i)
break
res = Variable(dtype['long'](res))
history = torch.cat([history, res.unsqueeze(-1)], -1)
return res, history
def get_target(s, t):
return Variable(dtype['long'](np.array([[
k if k in set(j).intersection(i) else np.random.choice(list(set(j).difference(i)))
for idx, k in enumerate(i)] for i,j in zip(s.data, t.data)])))
class Transformer(nn.Module):
"""
"""
def __init__(self, in_dim, key_dim, value_dim, fc_dim, linear_dim, in_voc_size,
out_voc_size, in_seq_len, out_seq_len, encode_input_position=True,
encode_output_position=False, num_heads=1, num_attention=1, residual=True,
normalization=None, nonlinearity=nn.ReLU(), duplicated_attention=False, mask=True,
unique_output=False, knn=None):
super(Transformer, self).__init__()
self.in_dim = in_dim
self.out_seq_len = out_seq_len
self.out_voc_size = out_voc_size
self.in_embed = nn.Embedding(in_voc_size, in_dim)
self.out_embed = nn.Embedding(out_voc_size+2, in_dim)
self.encode_input_position = encode_input_position
if self.encode_input_position:
self.input_pos_weight = nn.Parameter(torch.randn(2))
self.input_pos_vec = Variable(torch.Tensor([[np.sin(i/in_seq_len**(j/in_dim)) if j%2==0
else np.cos(i/in_seq_len**(j/in_dim))
for j in range(in_dim)] for i in range(in_seq_len)]).type(dtype['float']))
self.encode_output_position = encode_output_position
if self.encode_output_position:
self.output_pos_weight = nn.Parameter(torch.randn(2))
self.output_pos_vec = Variable(torch.Tensor([[np.sin(i/out_seq_len**(j/in_dim)) if j%2==0
else np.cos(i/out_seq_len**(j/in_dim))
for j in range(in_dim)] for i in range(out_seq_len)]).type(dtype['float']))
if duplicated_attention:
self.encoders = nn.ModuleList([EncoderAttention(
in_dim, in_dim, key_dim, value_dim, fc_dim, num_heads, residual, normalization, nonlinearity, knn=knn)]
* num_attention)
self.decoders = nn.ModuleList([DecoderAttention(
in_dim, in_dim, key_dim, value_dim, fc_dim, num_heads, residual, normalization,
nonlinearity, mask, knn=knn)] * num_attention)
else:
self.encoders = nn.ModuleList()
self.decoders = nn.ModuleList()
for i in range(num_attention):
self.encoders.append(EncoderAttention(
in_dim, in_dim, key_dim, value_dim, fc_dim, num_heads, residual, normalization, nonlinearity, knn=knn))
self.decoders.append(DecoderAttention(
in_dim, in_dim, key_dim, value_dim, fc_dim, num_heads, residual, normalization,
nonlinearity, mask, knn=knn))
self.linear = nn.Linear(in_dim, out_voc_size+1)
self.unique_output = unique_output
self.knn = knn
def forward(self, x, out=None, sequential=True, last_output_only=True):
if sequential:
assert self.knn is None
if x.dim()==2:
x = self.in_embed(x)
else:
size_x = x.size()
x = self.in_embed(x.contiguous().view(-1, size_x[-1])).contiguous().view(*size_x, self.in_dim)
if self.encode_input_position:
pos_weight = nn.functional.softmax(self.input_pos_weight, dim=0)
x = x*pos_weight[0] + self.input_pos_vec*pos_weight[1]
for encoder in self.encoders:
x = encoder(x)
if not sequential:
# This does not work well
if out is None:
out = Variable(dtype['long']([[self.out_voc_size+1]*self.out_seq_len]*x.size(0)))
out = self.out_embed(out)
if self.encode_output_position:
pos_weight = nn.functional.softmax(self.output_pos_weight, dim=0)
out = out*pos_weight[0] + self.output_pos_vec*pos_weight[1]
for decoder in self.decoders:
cur_out = decoder(out, x)
y = self.linear(cur_out)
else:
cur_out = self.out_embed(Variable(dtype['long']([self.out_voc_size]*x.size(0)).
unsqueeze(-1)))
y = []
if self.unique_output:
self.seq_generated = None
for i in range(self.out_seq_len):
for decoder in self.decoders:
cur_out = decoder(cur_out, x)
cur_y = self.linear(cur_out)[:, -1]
y.append(cur_y)
if self.unique_output:
assert self.out_seq_len <= self.out_voc_size+1
rank = cur_y.topk(self.out_seq_len, dim=-1)[1]
idx, self.seq_generated = get_uniq_topk(rank, self.seq_generated)
next_out = self.out_embed.weight[idx]
else:
next_out = self.out_embed.weight[cur_y.topk(1, dim=-1)[1].squeeze()]
if self.encode_output_position:
pos_weight = nn.functional.softmax(self.output_pos_weight, dim=0)
next_out = next_out*pos_weight[0] + self.output_pos_vec[i]*pos_weight[1]
cur_out = torch.cat([cur_out, next_out.unsqueeze(-2)], dim=-2)
y = torch.stack(y, dim=-2)
return y
class StackedEncoder(nn.Module):
"""
Examples:
model = StackedEncoder(in_dim=4, key_dim=3, value_dim=5, fc_dim=6, linear_dim=7, num_cls=8, num_heads=2, num_attention=2,
knn=None, residual=True, normalization=None, nonlinearity=nn.ReLU(), duplicated_attention=False, mask=False)
x = Variable(torch.randn(4, 4))
model(x, return_graph=True, return_all=True)
"""
def __init__(self, in_dim, key_dim, value_dim, fc_dim, linear_dim, num_cls, num_heads=1, num_attention=1,
knn=None, residual=True, normalization=None, nonlinearity=nn.ReLU(), duplicated_attention=False, mask=False,
return_graph=False, return_all=False):
super(StackedEncoder, self).__init__()
if duplicated_attention:
self.encoders = nn.ModuleList([EncoderAttention(
in_dim, in_dim, key_dim, value_dim, fc_dim, num_heads, residual, normalization, nonlinearity, knn=knn)]
* num_attention)
else:
self.encoders = nn.ModuleList()
for i in range(num_attention):
self.encoders.append(EncoderAttention(
in_dim, in_dim, key_dim, value_dim, fc_dim, num_heads, residual, normalization, nonlinearity, knn=knn))
self.linear = nn.Linear(in_dim, num_cls)
self.return_graph = return_graph
self.return_all = return_all
def forward(self, x):
return_graph = self.return_graph
return_all = self.return_all
if return_graph and return_all:
graphs = []
for encoder in self.encoders:
if return_graph:
x, graph = encoder(x, return_graph=True)
if return_all:
graphs.append(graph)
else:
x = encoder(x)
out = self.linear(x)
if return_graph:
if return_all:
return out, graphs
else:
return out, graph
else:
return out