[0ad989]: / tests / fig4_test.py

Download this file

339 lines (238 with data), 11.5 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
import os
import sys
current_path = os.path.dirname(__file__)
src_path = os.path.join(current_path, "..")
sys.path.append(src_path)
import pytest
import numpy as np
import multivelo as mv
import scanpy as sc
import scvelo as scv
import sys
sys.path.append("/..")
scv.settings.verbosity = 3
scv.settings.presenter_view = True
scv.set_figure_params('scvelo')
np.set_printoptions(suppress=True)
rna_path = "test_files/adata_postpro.h5ad"
atac_path = "test_files/adata_atac_postpro.h5ad"
@pytest.fixture(scope="session")
def result_data_4():
# read in the original AnnData objects
adata_rna = sc.read(rna_path)
adata_atac = sc.read(atac_path)
# subset genes to run faster
gene_list = ["Shh", "Heg1", "Cux1", "Lef1"]
# run our first function to test (recover_dynamics_chrom)
adata_result = mv.recover_dynamics_chrom(adata_rna,
adata_atac,
gene_list=gene_list,
max_iter=5,
init_mode="invert",
parallel=True,
n_jobs=15,
save_plot=False,
rna_only=False,
fit=True,
n_anchors=500,
extra_color_key='celltype')
return adata_result
# the next three tests check to see if recover_dynamics_chrom calculated
# the correct parameters for each of our four genes
def test_alpha(result_data_4):
alpha = result_data_4.var["fit_alpha"]
assert alpha[0] == pytest.approx(0.45878197934025416)
assert alpha[1] == pytest.approx(0.08032904996744818)
assert alpha[2] == pytest.approx(1.5346878202804608)
assert alpha[3] == pytest.approx(0.9652887906148591)
def test_beta(result_data_4):
beta = result_data_4.var["fit_beta"]
assert beta[0] == pytest.approx(0.28770367567423)
assert beta[1] == pytest.approx(0.14497469719573167)
assert beta[2] == pytest.approx(0.564865749852349)
assert beta[3] == pytest.approx(0.2522643118709811)
def test_gamma(result_data_4):
gamma = result_data_4.var["fit_gamma"]
assert gamma[0] == pytest.approx(0.19648836445315102)
assert gamma[1] == pytest.approx(0.07703610603664116)
assert gamma[2] == pytest.approx(1.0079569101225154)
assert gamma[3] == pytest.approx(0.7485734061079243)
def test_embedding_stream(result_data_4):
mv.velocity_graph(result_data_4)
ax = mv.velocity_embedding_stream(result_data_4, basis='umap',
color='celltype', show=False)
assert ax is not None
assert ax.axis()[0] == pytest.approx(-2.0698418340618714)
assert ax.axis()[1] == pytest.approx(8.961822542538197)
assert ax.axis()[2] == pytest.approx(-14.418079041548095)
assert ax.axis()[3] == pytest.approx(-7.789863798927619)
assert ax.get_xlim()[0] == pytest.approx(-2.0698418340618714)
assert ax.get_xlim()[1] == pytest.approx(8.961822542538197)
assert ax.get_ylim()[0] == pytest.approx(-14.418079041548095)
assert ax.get_ylim()[1] == pytest.approx(-7.789863798927619)
# tests the latent_time function
def test_latent_time(result_data_4):
mv.velocity_graph(result_data_4)
mv.latent_time(result_data_4)
latent_time = result_data_4.obs["latent_time"]
assert latent_time.shape[0] == 6436
# test the velocity_graph function
def test_velo_graph(result_data_4):
mv.velocity_graph(result_data_4)
digits = 8
v_graph_mat = result_data_4.uns["velo_s_norm_graph"].tocoo()
v_graph = v_graph_mat.data
v_graph = v_graph.astype(float)
v_graph = v_graph.round(decimals=digits)
v_graph_rows = v_graph_mat.row
v_graph_cols = v_graph_mat.col
assert len(v_graph) == 1883599
assert v_graph[0] == pytest.approx(1.0)
assert v_graph[500000] == pytest.approx(1.0)
assert v_graph[1005000] == pytest.approx(0.99999994)
assert v_graph[1500000] == pytest.approx(1.0)
assert v_graph_rows[0] == 0
assert v_graph_rows[500000] == 1411
assert v_graph_rows[1005000] == 2834
assert v_graph_rows[1500000] == 4985
assert v_graph_cols[0] == 7
assert v_graph_cols[500000] == 2406
assert v_graph_cols[1005000] == 2892
assert v_graph_cols[1500000] == 2480
@pytest.fixture(scope="session")
def lrt_compute():
# read in the original AnnData objects
adata_rna = sc.read(rna_path)
adata_atac = sc.read(atac_path)
# subset genes to run faster
gene_list = ["Shh", "Heg1", "Cux1", "Lef1"]
# run our first function to test (LRT_decoupling)
w_de, wo_de, res = mv.LRT_decoupling(adata_rna,
adata_atac,
gene_list=gene_list,
max_iter=5,
init_mode="invert",
parallel=True,
n_jobs=15,
save_plot=False,
rna_only=False,
fit=True,
n_anchors=500,
extra_color_key='celltype')
# w_de = with decoupling
# wo_de = without decoupling
# res = LRT stats
return (w_de, wo_de, res)
def decouple_test(lrt_compute):
w_decouple = lrt_compute[0]
alpha_c = w_decouple.var["fit_alpha_c"]
assert alpha_c[0] == pytest.approx(0.057961)
assert alpha_c[1] == pytest.approx(0.039439)
assert alpha_c[2] == pytest.approx(0.076731)
assert alpha_c[3] == pytest.approx(0.063575)
beta = w_decouple.var["fit_beta"]
assert beta[0] == pytest.approx(0.287704)
assert beta[1] == pytest.approx(0.144975)
assert beta[2] == pytest.approx(0.564866)
assert beta[3] == pytest.approx(0.252264)
gamma = w_decouple.var["fit_gamma"]
assert gamma[0] == pytest.approx(0.196488)
assert gamma[1] == pytest.approx(0.077036)
assert gamma[2] == pytest.approx(1.007957)
assert gamma[3] == pytest.approx(0.748573)
def no_decouple_test(lrt_compute):
print("No decouple test")
wo_decouple = lrt_compute[1]
alpha_c = wo_decouple.var["fit_alpha_c"]
assert alpha_c[0] == pytest.approx(0.093752)
assert alpha_c[1] == pytest.approx(0.041792)
assert alpha_c[2] == pytest.approx(0.051228)
assert alpha_c[3] == pytest.approx(0.050951)
beta = wo_decouple.var["fit_beta"]
assert beta[0] == pytest.approx(0.840938)
assert beta[1] == pytest.approx(0.182773)
assert beta[2] == pytest.approx(0.326623)
assert beta[3] == pytest.approx(0.232073)
gamma = wo_decouple.var["fit_gamma"]
assert gamma[0] == pytest.approx(0.561730)
assert gamma[1] == pytest.approx(0.106799)
assert gamma[2] == pytest.approx(0.783257)
assert gamma[3] == pytest.approx(0.705256)
def lrt_res_test(lrt_compute):
res = lrt_compute[2]
likelihood_c_w_decoupled = res["likelihood_c_w_decoupled"]
assert likelihood_c_w_decoupled[0] == pytest.approx(0.279303)
assert likelihood_c_w_decoupled[1] == pytest.approx(0.186213)
assert likelihood_c_w_decoupled[2] == pytest.approx(0.295591)
assert likelihood_c_w_decoupled[3] == pytest.approx(0.144158)
likelihood_c_wo_decoupled = res["likelihood_c_wo_decoupled"]
assert likelihood_c_wo_decoupled[0] == pytest.approx(0.270491)
assert likelihood_c_wo_decoupled[1] == pytest.approx(0.180695)
assert likelihood_c_wo_decoupled[2] == pytest.approx(0.294631)
assert likelihood_c_wo_decoupled[3] == pytest.approx(0.175622)
LRT_c = res["LRT_c"]
assert LRT_c[0] == pytest.approx(412.637730)
assert LRT_c[1] == pytest.approx(387.177688)
assert LRT_c[2] == pytest.approx(41.850304)
assert LRT_c[3] == pytest.approx(-2541.289231)
pval_c = res["pval_c"]
assert pval_c[0] == pytest.approx(9.771580e-92)
assert pval_c[1] == pytest.approx(3.406463e-86)
assert pval_c[2] == pytest.approx(9.853544e-11)
assert pval_c[3] == pytest.approx(1.000000e+00)
likelihood_w_decoupled = res["likelihood_w_decoupled"]
assert likelihood_w_decoupled[0] == pytest.approx(0.177979)
assert likelihood_w_decoupled[1] == pytest.approx(0.008453)
assert likelihood_w_decoupled[2] == pytest.approx(0.140156)
assert likelihood_w_decoupled[3] == pytest.approx(0.005029)
likelihood_wo_decoupled = res["likelihood_wo_decoupled"]
assert likelihood_wo_decoupled[0] == pytest.approx(0.181317)
assert likelihood_wo_decoupled[1] == pytest.approx(0.009486)
assert likelihood_wo_decoupled[2] == pytest.approx(0.141367)
assert likelihood_wo_decoupled[3] == pytest.approx(0.008299)
LRT = res["LRT"]
assert LRT[0] == pytest.approx(-239.217562)
assert LRT[1] == pytest.approx(-1485.199859)
assert LRT[2] == pytest.approx(-110.788912)
assert LRT[3] == pytest.approx(-6447.599212)
pval = res["pval"]
assert pval[0] == pytest.approx(1.0)
assert pval[1] == pytest.approx(1.0)
assert pval[2] == pytest.approx(1.0)
assert pval[3] == pytest.approx(1.0)
c_likelihood = res["likelihood_c_w_decoupled"]
assert c_likelihood[0] == pytest.approx(0.279303)
assert c_likelihood[1] == pytest.approx(0.186213)
assert c_likelihood[2] == pytest.approx(0.295591)
assert c_likelihood[3] == pytest.approx(0.144158)
def test_qc_metrics():
adata_rna = sc.read(rna_path)
mv.calculate_qc_metrics(adata_rna)
total_unspliced = adata_rna.obs["total_unspliced"]
assert total_unspliced.shape == (6436,)
assert total_unspliced[0] == pytest.approx(91.709404)
assert total_unspliced[1500] == pytest.approx(115.21283)
assert total_unspliced[3000] == pytest.approx(61.402004)
assert total_unspliced[4500] == pytest.approx(84.03409)
assert total_unspliced[6000] == pytest.approx(61.26761)
total_spliced = adata_rna.obs["total_spliced"]
assert total_spliced.shape == (6436,)
assert total_spliced[0] == pytest.approx(91.514175)
assert total_spliced[1500] == pytest.approx(66.045616)
assert total_spliced[3000] == pytest.approx(87.05275)
assert total_spliced[4500] == pytest.approx(83.82857)
assert total_spliced[6000] == pytest.approx(62.019516)
unspliced_ratio = adata_rna.obs["unspliced_ratio"]
assert unspliced_ratio.shape == (6436,)
assert unspliced_ratio[0] == pytest.approx(0.5005328)
assert unspliced_ratio[1500] == pytest.approx(0.6356273)
assert unspliced_ratio[3000] == pytest.approx(0.4136075)
assert unspliced_ratio[4500] == pytest.approx(0.50061214)
assert unspliced_ratio[6000] == pytest.approx(0.4969506)
cell_cycle_score = adata_rna.obs["cell_cycle_score"]
assert cell_cycle_score.shape == (6436,)
assert cell_cycle_score[0] == pytest.approx(-0.24967776384597046)
assert cell_cycle_score[1500] == pytest.approx(0.5859756395543293)
assert cell_cycle_score[3000] == pytest.approx(0.06501555292615813)
assert cell_cycle_score[4500] == pytest.approx(0.1406775909466575)
assert cell_cycle_score[6000] == pytest.approx(-0.33825528386759895)