[5d6472]: / src / multivelo / steady_chrom_func.py

Download this file

632 lines (569 with data), 24.9 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
import os
import sys
import warnings
import numpy as np
from scipy import sparse
from scipy.sparse import csr_matrix, issparse
from scanpy import Neighbors
import pandas as pd
from tqdm.auto import tqdm
from joblib import Parallel, delayed
current_path = os.path.dirname(__file__)
src_path = os.path.join(current_path, "..")
sys.path.append(src_path)
from multivelo import mv_logging as logg
from multivelo import settings
class ChromatinVelocity:
def __init__(self, c, u, s,
ss, us,
gene=None,
save_plot=False,
plot_dir=None,
fit_args=None,
rna_only=False,
extra_color=None,
r2_adjusted=True,
):
self.gene = gene
# fitting arguments
self.rna_only = rna_only
self.outlier = np.clip(fit_args['outlier'], 80, 100)
self.r2_adjusted = r2_adjusted
# plot parameters
self.save_plot = save_plot
self.extra_color = extra_color
self.fig_size = fit_args['fig_size']
self.point_size = fit_args['point_size']
if plot_dir is None:
self.plot_path = 'plots_steady_state'
else:
self.plot_path = plot_dir
# input
self.total_n = len(u)
if sparse.issparse(c):
c = c.A
if sparse.issparse(u):
u = u.A
if sparse.issparse(s):
s = s.A
if ss is not None and sparse.issparse(ss):
ss = ss.A
if us is not None and sparse.issparse(us):
us = us.A
self.c_all = np.ravel(np.array(c, dtype=np.float64))
self.u_all = np.ravel(np.array(u, dtype=np.float64))
self.s_all = np.ravel(np.array(s, dtype=np.float64))
if ss is not None:
self.ss_all = np.ravel(np.array(ss, dtype=np.float64))
if us is not None:
self.us_all = np.ravel(np.array(us, dtype=np.float64))
# adjust offset
self.offset_c, self.offset_u, self.offset_s = np.min(self.c_all), \
np.min(self.u_all), \
np.min(self.s_all)
self.offset_c = 0 if self.rna_only else self.offset_c
self.c_all -= self.offset_c
self.u_all -= self.offset_u
self.s_all -= self.offset_s
# remove zero counts
self.non_zero = np.ravel(self.c_all > 0) | np.ravel(self.u_all > 0) | \
np.ravel(self.s_all > 0)
# remove outliers
self.non_outlier = np.ravel(self.c_all <=
np.percentile(self.c_all, self.outlier))
self.non_outlier &= np.ravel(self.u_all <=
np.percentile(self.u_all, self.outlier))
self.non_outlier &= np.ravel(self.s_all <=
np.percentile(self.s_all, self.outlier))
self.c = self.c_all[self.non_zero & self.non_outlier]
self.u = self.u_all[self.non_zero & self.non_outlier]
self.s = self.s_all[self.non_zero & self.non_outlier]
self.ss = (None if ss is None
else self.ss_all[self.non_zero & self.non_outlier])
self.us = (None if us is None
else self.us_all[self.non_zero & self.non_outlier])
self.low_quality = len(self.u) < 10
logg.update(f'{len(self.u)} cells passed filter and will be used to '
'fit regressions.', v=2)
# 4 rate parameters
self.alpha_c = 0.1
self.alpha = 0.0
self.beta = 0.0
self.gamma = 0.0
# other parameters or results
self.loss = np.inf
self.r2 = 0
self.residual = None
self.residual2 = None
self.steady_state_func = None
# select cells for regression
w_sub = (self.c >= 0.1 * np.max(self.c)) & \
(self.u >= 0.1 * np.max(self.u)) & \
(self.s >= 0.1 * np.max(self.s))
c_sub = self.c[w_sub]
if not self.rna_only:
w_sub = (self.c >= np.mean(c_sub)+np.std(c_sub)) & \
(self.u >= 0.1 * np.max(self.u)) & \
(self.s >= 0.1 * np.max(self.s))
self.w_sub = w_sub
if np.sum(self.w_sub) < 10:
self.low_quality = True
def compute_deterministic(self):
if self.rna_only:
# steady-state slope
wu = self.u >= np.percentile(self.u[self.w_sub], 95)
ws = self.s >= np.percentile(self.s[self.w_sub], 95)
ss_u = self.u[wu | ws]
ss_s = self.s[wu | ws]
else:
# chromatin adjusted steady-state slope
u_high = self.u[self.w_sub]
s_high = self.s[self.w_sub]
wu_high = u_high >= np.percentile(u_high, 95)
ws_high = s_high >= np.percentile(s_high, 95)
ss_u = u_high[wu_high | ws_high]
ss_s = s_high[wu_high | ws_high]
gamma = np.dot(ss_u, ss_s) / np.dot(ss_s, ss_s)
self.steady_state_func = lambda x: gamma*x
residual = self.u_all - self.steady_state_func(self.s_all)
self.residual = residual
self.loss = np.dot(self.residual, self.residual) / len(self.u_all)
if self.r2_adjusted:
gamma = np.dot(self.u, self.s) / np.dot(self.s, self.s)
residual = self.u_all - gamma * self.s_all
total = self.u_all - np.mean(self.u_all)
self.r2 = 1 - np.dot(residual, residual) / np.dot(total, total)
def compute_stochastic(self):
self.compute_deterministic()
var_ss = 2 * self.ss - self.s
cov_us = 2 * self.us + self.u
s_all_ = 2 * self.s_all**2 - (2 * self.ss_all - self.s_all)
u_all_ = (2 * self.us_all + self.u_all) - 2 * self.u_all*self.s_all
gamma2 = np.dot(cov_us, var_ss) / np.dot(var_ss, var_ss)
residual2 = cov_us - gamma2 * var_ss
std_first = np.std(self.residual)
std_second = np.std(residual2)
# combine first and second moments and recompute gamma
if self.rna_only:
# steady-state slope
wu = self.u >= np.percentile(self.u[self.w_sub], 95)
ws = self.s >= np.percentile(self.s[self.w_sub], 95)
ss_u = self.u * (wu | ws)
ss_s = self.s * (wu | ws)
a = np.hstack((ss_s / std_first, var_ss / std_second))
b = np.hstack((ss_u / std_first, cov_us / std_second))
else:
# chromatin adjusted steady-state slope
u_high = self.u[self.w_sub]
s_high = self.s[self.w_sub]
wu_high = u_high >= np.percentile(u_high, 95)
ws_high = s_high >= np.percentile(s_high, 95)
ss_u = u_high * (wu_high | ws_high)
ss_s = s_high * (wu_high | ws_high)
a = np.hstack((ss_s / std_first, var_ss[self.w_sub] / std_second))
b = np.hstack((ss_u / std_first, cov_us[self.w_sub] / std_second))
gamma = np.dot(b, a) / np.dot(a, a)
self.steady_state_func = lambda x: gamma*x
self.residual = self.u_all - self.steady_state_func(self.s_all)
self.residual2 = u_all_ - self.steady_state_func(s_all_)
self.loss = np.dot(self.residual, self.residual) / len(self.u_all)
def get_velocity(self):
return self.residual
def get_variance_velocity(self):
return self.residual2
def get_r2(self):
return self.r2
def get_loss(self):
return self.loss
def regress_func(c, u, s, ss, us, m, sp, pdir, fa, gene, ro, extra):
c_90 = np.percentile(c, 90)
u_90 = np.percentile(u, 90)
s_90 = np.percentile(s, 90)
low_quality = ((u_90 == 0 or s_90 == 0) if ro
else (c_90 == 0 or u_90 == 0 or s_90 == 0))
if low_quality:
logg.update(f'low quality gene {gene}, skipping', v=1)
return np.zeros(len(u)), np.zeros(len(u)), 0, np.inf
cvc = ChromatinVelocity(c,
u,
s,
ss,
us,
save_plot=sp,
plot_dir=pdir,
fit_args=fa,
gene=gene,
rna_only=ro,
extra_color=extra)
if cvc.low_quality:
return np.zeros(len(u)), np.zeros(len(u)), 0, np.inf
if m == 'deterministic':
cvc.compute_deterministic()
elif m == 'stochastic':
cvc.compute_stochastic()
velocity = cvc.get_velocity()
r2 = cvc.get_r2()
loss = cvc.get_loss()
variance_velocity = (None if m == 'deterministic'
else cvc.get_variance_velocity())
return velocity, variance_velocity, r2, loss
def velocity_chrom(adata_rna,
adata_atac=None,
gene_list=None,
mode='stochastic',
parallel=True,
n_jobs=None,
save_plot=False,
plot_dir=None,
rna_only=False,
extra_color_key=None,
min_r2=1e-2,
outlier=99.8,
n_pcs=30,
n_neighbors=30,
fig_size=(8, 6),
point_size=7
):
"""Multi-omic steady-state model.
This function incorporates chromatin accessibilities into RNA steady-state
velocity.
Parameters
----------
adata_rna: :class:`~anndata.AnnData`
RNA anndata object. Required fields: `Mu`, `Ms`, and `connectivities`.
adata_atac: :class:`~anndata.AnnData` (default: `None`)
ATAC anndata object. Required fields: `Mc`.
gene_list: `str`, list of `str` (default: highly variable genes)
Genes to use for model fitting.
mode: `str` (default: `'stochastic'`)
Fitting method.
`'stochastic'`: computing steady-state ratio with the first and second
moments.
`'deterministic'`: computing steady-state ratio with the first moments.
parallel: `bool` (default: `True`)
Whether to fit genes in a parallel fashion (recommended).
n_jobs: `int` (default: available threads)
Number of parallel jobs.
save_plot: `bool` (default: `False`)
Whether to save the fitted gene portrait figures as files. This will
take some disk space.
plot_dir: `str` (default: `plots` for multiome and `rna_plots` for
RNA-only)
Directory to save the plots.
rna_only: `bool` (default: `False`)
Whether to only use RNA for fitting (RNA velocity).
extra_color_key: `str` (default: `None`)
Extra color key used for plotting. Common choices are `leiden`,
`celltype`, etc.
The colors for each category must be present in one of anndatas, which
can be pre-computed.
with `scanpy.pl.scatter` function.
min_r2: `float` (default: 1e-2)
Minimum R-squared value for selecting velocity genes.
outlier: `float` (default: 99.8)
The percentile to mark as outlier that will be excluded when fitting
the model.
n_pcs: `int` (default: 30)
Number of principal components to compute distance smoothing neighbors.
This can be different from the one used for expression smoothing.
n_neighbors: `int` (default: 30)
Number of nearest neighbors for distance smoothing.
This can be different from the one used for expression smoothing.
fig_size: `tuple` (default: (8,6))
Size of each figure when saved.
point_size: `float` (default: 7)
Marker point size for plotting.
Returns
-------
fit_r2: `.var`
R-squared of regression fit
fit_loss: `.var`
loss of model fit
velo_s: `.layers`
velocities in spliced space
variance_velo_s: `.layers`
variance velocities based on second moments in spliced space
velo_s_genes: `.var`
velocity genes
velo_s_params: `.var`
fitting arguments used
ATAC: `.layers`
KNN smoothed chromatin accessibilities copied from adata_atac
"""
fit_args = {}
fit_args['min_r2'] = min_r2
fit_args['outlier'] = outlier
fit_args['n_pcs'] = n_pcs
fit_args['n_neighbors'] = n_neighbors
fit_args['fig_size'] = list(fig_size)
fit_args['point_size'] = point_size
if mode == 'dynamical':
logg.update('You do not need to run mv.velocity for chromatin '
'dynamical model', v=0)
return
elif mode == 'stochastic' or mode == 'deterministic':
fit_args['mode'] = mode
else:
raise ValueError('Unknown mode. Must be either stochastic or '
'deterministic')
all_genes = adata_rna.var_names
if adata_atac is None:
import anndata as ad
rna_only = True
adata_atac = ad.AnnData(X=np.ones(adata_rna.shape), obs=adata_rna.obs,
var=adata_rna.var)
adata_atac.layers['Mc'] = np.ones(adata_rna.shape)
if adata_rna.shape != adata_atac.shape:
raise ValueError('Shape of RNA and ATAC adata objects do not match:'
f'{adata_rna.shape} {adata_atac.shape}')
if not np.all(adata_rna.obs_names == adata_atac.obs_names):
raise ValueError('obs_names of RNA and ATAC adata objects do not '
'match, please check if they are consistent')
if not np.all(all_genes == adata_atac.var_names):
raise ValueError('var_names of RNA and ATAC adata objects do not '
'match, please check if they are consistent')
if extra_color_key is None:
extra_color = None
elif (isinstance(extra_color_key, str) and extra_color_key in adata_rna.obs
and adata_rna.obs[extra_color_key].dtype.name == 'category'):
ngroups = len(adata_rna.obs[extra_color_key].cat.categories)
extra_color = adata_rna.obs[extra_color_key].cat.rename_categories(
adata_rna.uns[extra_color_key+'_colors'][:ngroups]).to_numpy()
elif (isinstance(extra_color_key, str)
and extra_color_key in adata_atac.obs and
adata_rna.obs[extra_color_key].dtype.name == 'category'):
ngroups = len(adata_atac.obs[extra_color_key].cat.categories)
extra_color = adata_atac.obs[extra_color_key].cat.rename_categories(
adata_atac.uns[extra_color_key+'_colors'][:ngroups]).to_numpy()
else:
raise ValueError('Currently, extra_color_key must be a single string '
'of categories and available in adata obs, and its '
'colors can be found in adata uns')
if ('connectivities' not in adata_rna.obsp.keys() or
(adata_rna.obsp['connectivities'] > 0).sum(1).min()
> (n_neighbors-1)):
neighbors = Neighbors(adata_rna)
neighbors.compute_neighbors(n_neighbors=n_neighbors,
knn=True, n_pcs=n_pcs)
rna_conn = neighbors.connectivities
else:
rna_conn = adata_rna.obsp['connectivities'].copy()
rna_conn.setdiag(1)
rna_conn = rna_conn.multiply(1.0 / rna_conn.sum(1)).tocsr()
Mss, Mus = None, None
if mode == 'stochastic':
Mss, Mus = second_order_moments(adata_rna)
if gene_list is None:
if 'highly_variable' in adata_rna.var:
gene_list = adata_rna.var_names[
adata_rna.var['highly_variable']].values
else:
gene_list = adata_rna.var_names.values[
(~np.isnan(np.asarray(adata_rna.layers['Mu'].sum(0))
.reshape(-1)
if sparse.issparse(adata_rna.layers['Mu'])
else np.sum(adata_rna.layers['Mu'], axis=0)))
& (~np.isnan(np.asarray(adata_rna.layers['Ms'].sum(0))
.reshape(-1)
if sparse.issparse(adata_rna.layers['Ms'])
else np.sum(adata_rna.layers['Ms'], axis=0)))
& (~np.isnan(np.asarray(adata_atac.layers['Mc'].sum(0))
.reshape(-1)
if sparse.issparse(adata_atac.layers['Mc'])
else np.sum(adata_atac.layers['Mc'], axis=0)))]
elif isinstance(gene_list, (list, np.ndarray, pd.Index, pd.Series)):
gene_list = np.array([x for x in gene_list if x in all_genes])
elif isinstance(gene_list, str):
gene_list = np.array([gene_list]) if gene_list in all_genes else []
else:
raise ValueError('Invalid gene list, must be one of (str, np.ndarray,'
' pd.Index, pd.Series)')
gn = len(gene_list)
if gn == 0:
raise ValueError('None of the genes specified are in the adata object')
logg.update(f'{gn} genes will be fitted', v=1)
velo_s = np.zeros((adata_rna.n_obs, gn))
variance_velo_s = np.zeros((adata_rna.n_obs, gn))
r2s = np.zeros(gn)
losses = np.zeros(gn)
u_mat = (adata_rna[:, gene_list].layers['Mu'].A
if sparse.issparse(adata_rna.layers['Mu'])
else adata_rna[:, gene_list].layers['Mu'])
s_mat = (adata_rna[:, gene_list].layers['Ms'].A
if sparse.issparse(adata_rna.layers['Ms'])
else adata_rna[:, gene_list].layers['Ms'])
c_mat = (adata_atac[:, gene_list].layers['Mc'].A
if sparse.issparse(adata_atac.layers['Mc'])
else adata_atac[:, gene_list].layers['Mc'])
if parallel:
if (n_jobs is None or not isinstance(n_jobs, int) or
n_jobs < 0 or n_jobs > os.cpu_count()):
n_jobs = os.cpu_count()
if n_jobs > gn:
n_jobs = gn
batches = -(-gn // n_jobs)
if n_jobs > 1:
logg.update(f'running {n_jobs} jobs in parallel', v=1)
else:
n_jobs = 1
batches = gn
if n_jobs == 1:
parallel = False
pbar = tqdm(total=gn)
for group in range(batches):
gene_indices = range(group * n_jobs, np.min([gn, (group+1) * n_jobs]))
if parallel:
verb = 51 if settings.VERBOSITY >= 2 else 0
res = Parallel(n_jobs=n_jobs, backend='loky', verbose=verb)(
delayed(regress_func)(
c_mat[:, i],
u_mat[:, i],
s_mat[:, i],
None if mode == 'deterministic' else Mss[:, i],
None if mode == 'deterministic' else Mus[:, i],
mode,
save_plot,
plot_dir,
fit_args,
gene_list[i],
rna_only,
extra_color)
for i in gene_indices)
for i, r in zip(gene_indices, res):
velocity, variance_velocity, r2, loss = r
r2s[i] = r2
losses[i] = loss
velo_s[:, i] = smooth_scale(rna_conn, velocity)
if mode == 'stochastic':
variance_velo_s[:, i] = smooth_scale(rna_conn,
variance_velocity)
else:
i = group
gene = gene_list[i]
logg.update(f'@@@@@fitting {gene}', v=1)
velocity, variance_velocity, r2, loss = \
regress_func(c_mat[:, i],
u_mat[:, i],
s_mat[:, i],
None
if mode == 'deterministic' else Mss[:, i],
None if mode == 'deterministic' else Mus[:, i],
mode,
save_plot,
plot_dir,
fit_args,
gene_list[i],
rna_only,
extra_color)
r2s[i] = r2
losses[i] = loss
velo_s[:, i] = smooth_scale(rna_conn, velocity)
if mode == 'stochastic':
variance_velo_s[:, i] = smooth_scale(rna_conn,
variance_velocity)
pbar.update(len(gene_indices))
pbar.close()
filt = losses != np.inf
if np.sum(filt) == 0:
raise ValueError('None of the genes were fitted due to low quality, '
'not returning')
adata_copy = adata_rna[:, gene_list[filt]].copy()
adata_copy.layers['ATAC'] = c_mat[:, filt]
adata_copy.var['fit_loss'] = losses[filt]
adata_copy.var['fit_r2'] = r2s[filt]
adata_copy.layers['velo_s'] = velo_s[:, filt]
if mode == 'stochastic':
adata_copy.layers['variance_velo_s'] = variance_velo_s[:, filt]
v_genes = adata_copy.var['fit_r2'] >= min_r2
adata_copy.var['velo_s_genes'] = v_genes
adata_copy.uns['velo_s_params'] = {'mode': mode, 'fit_offset': False,
'perc': 95}
adata_copy.uns['velo_s_params'].update(fit_args)
adata_copy.obsp['_RNA_conn'] = rna_conn
return adata_copy
def smooth_scale(conn, vector):
max_to = np.max(vector)
min_to = np.min(vector)
v = conn.dot(vector.T).T
max_from = np.max(v)
min_from = np.min(v)
res = ((v - min_from) * (max_to - min_to) / (max_from - min_from)) + min_to
return res
###############################################################################
# The following functions are taken directly from scVelo preprocessing
# [Bergen et al., 2020] (https://github.com/theislab/scvelo)
###############################################################################
def select_connectivities(connectivities, n_neighbors=None):
C = connectivities.copy()
n_counts = (C > 0).sum(1).A1 if issparse(C) else (C > 0).sum(1)
n_neighbors = (
n_counts.min() if n_neighbors is None else min(n_counts.min(),
n_neighbors)
)
rows = np.where(n_counts > n_neighbors)[0]
cumsum_neighs = np.insert(n_counts.cumsum(), 0, 0)
dat = C.data
for row in rows:
n0, n1 = cumsum_neighs[row], cumsum_neighs[row + 1]
rm_idx = n0 + dat[n0:n1].argsort()[::-1][n_neighbors:]
dat[rm_idx] = 0
C.eliminate_zeros()
return C
def get_neighs(adata, mode="distances"):
if hasattr(adata, "obsp") and mode in adata.obsp.keys():
return adata.obsp[mode]
elif "neighbors" in adata.uns.keys() and mode in adata.uns["neighbors"]:
return adata.uns["neighbors"][mode]
else:
raise ValueError("The selected mode is not valid.")
def get_n_neighs(adata):
return (adata.uns.get("neighbors", {}).get("params", {})
.get("n_neighbors", 0))
def get_connectivities(adata, mode="connectivities", n_neighbors=None,
recurse_neighbors=False):
if "neighbors" in adata.uns.keys():
C = get_neighs(adata, mode)
if n_neighbors is not None and n_neighbors < get_n_neighs(adata):
if mode == "connectivities":
C = select_connectivities(C, n_neighbors)
else:
C = select_distances(C, n_neighbors)
connectivities = C > 0
with warnings.catch_warnings():
warnings.simplefilter("ignore")
connectivities.setdiag(1)
if recurse_neighbors:
connectivities += connectivities.dot(connectivities * 0.5)
connectivities.data = np.clip(connectivities.data, 0, 1)
connectivities = connectivities.multiply(1.0 /
connectivities.sum(1))
return connectivities.tocsr().astype(np.float32)
else:
return None
def second_order_moments(adata, adjusted=False):
"""Computes second order moments for stochastic velocity estimation.
Arguments
---------
adata: `AnnData`
Annotated data matrix.
Returns
-------
Mss: Second order moments for spliced abundances
Mus: Second order moments for spliced with unspliced abundances
"""
if "neighbors" not in adata.uns:
raise ValueError(
"You need to run `pp.neighbors` first to compute a neighborhood "
"graph."
)
connectivities = get_connectivities(adata)
s, u = csr_matrix(adata.layers["spliced"]), \
csr_matrix(adata.layers["unspliced"])
if s.shape[0] == 1:
s, u = s.T, u.T
Mss = csr_matrix.dot(connectivities, s.multiply(s)).astype(np.float32).A
Mus = csr_matrix.dot(connectivities, s.multiply(u)).astype(np.float32).A
if adjusted:
Mss = 2 * Mss - adata.layers["Ms"].reshape(Mss.shape)
Mus = 2 * Mus - adata.layers["Mu"].reshape(Mus.shape)
return Mss, Mus