[dafc59]: / R / MultiOmicsPower15.R

Download this file

817 lines (551 with data), 30.3 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
######################################################################################
###### MULTIPOWER
###### Optimization model to maximize power of multi-omics integration models
######################################################################################
## By Sonia Tarazona and David Gomez-Cabrero
## 05-Oct-2017
## Last modified: March-2023
#
#### PACKAGES READ
# install.packages("FDRsampsize")
require(FDRsampsize)
require(lpSolve)
# install.packages("slam")
# install.packages("lpmodeler")
# require(lpmodeler)
# require(Rsymphony)
# 1) Install SYMPHONY: (now 5.6.16, first MultiPower version was with 5.6.10)
# cd
# svn checkout https://projects.coin-or.org/svn/SYMPHONY/releases/5.6.16 SYMPHONY-5.6.16
# cd SYMPHONY-5.6.16
# ./configure
# make
# make install
# 2) Install other components:
# sudo apt-get install coinor-libcgl-dev coinor-libclp-dev coinor-libcoinutils-dev coinor-libosi-dev
# sudo apt-get install coinor-libsymphony-dev
# sudo apt-get install autotools-dev
# 3) Intall package in R (previously downloaded from CRAN):
# install.packages("Rsymphony_0.1-26.tar.gz", repos = NULL)
# https://cran.r-project.org/src/contrib/Rsymphony_0.1-26.tar.gz
# https://projects.coin-or.org/SYMPHONY
#Download: wget http://www.coin-or.org/download/source/SYMPHONY/SYMPHONY-5.6.6.tgz
# require(boot)
# Auxiliary functions -----------------------------------------------------
geomean = function (x) exp(mean(log(x)))
cohen.h = function (p) abs(2*asin(sqrt(p[1])) - 2*asin(sqrt(p[2]))) # p is a vector with two components
power.binary = function(n, sig.level=0.05, p1_p2, p1) {
if (length(p1_p2) != length(p1)) stop("p1_p2 and p1 must be of the same length")
p2 = p1 - p1_p2
mypower = sapply(1:length(p1), function (i) power.prop.test(n=n, p1 = p1[i], p2 = p2[i], sig.level = sig.level)$power)
return(mypower)
}
# Estimating parameters needed for power calculation ----------------------
## Two-group comparison
paramEst = function (data, groups, type = 1) {
# type = 1 (counts), 2 (gaussian), 3 (binary variables: 0/1 or FALSE/TRUE)
# Sample size per group
nGroup = table(groups)
sd0 = apply(data, 1, sd)
sd0 = which(sd0 == 0)
if (length(sd0) > 0) {
print(paste0(length(sd0), " constant features are to be removed from the analysis."))
data = data[-sd0,]
}
# Number of features
M = nrow(data)
# Sequencing depth correction for count data
if (type == 1) {
seqdepth = colSums(data)
med = median(seqdepth)
data = apply(data, 2, function (x) med*x/sum(x))
}
# Mean counts per group
meanPerGroup = t(apply(data, 1, tapply, INDEX = groups, mean, na.rm = TRUE))
if (type != 3) {
# Standard deviation per group
sdPerGroup = t(apply(data, 1, tapply, INDEX = groups, sd, na.rm = TRUE))
sdPerGroup = sdPerGroup[,names(nGroup)]
# Pooled Standard Deviation
SDpooled = sqrt((nGroup[1]*sdPerGroup[,1]^2 + nGroup[2]*sdPerGroup[,2]^2)/(sum(as.numeric(nGroup))-2))
# Cohen's d per feature
deltaPerFeat = abs(meanPerGroup[,1] - meanPerGroup[,2])
d = deltaPerFeat/SDpooled
} else {
d = apply(meanPerGroup, 1, cohen.h)
}
if (type == 1) { ## COUNT DATA
cat("Parameters are to be estimated for count data \n")
if(min(data, na.rm = TRUE) < 0) stop("Negative values were found. Are you sure these are count data?\n")
# Fold-change estimation
allFC = log2(apply(meanPerGroup, 1, function (x) max(0.0000001, x[2]) / max(x[1], 0.0000001)))
# Average counts
mu = rowMeans(data, na.rm = TRUE)
# CV
myCV = SDpooled/mu
# Estimated parameters for count data
myparameters = list("type" = type, "logFC" = allFC, "pooledSD" = SDpooled, "CV" = myCV,
"delta" = deltaPerFeat, "mu" = mu,"m" = M, "d" = d, "nGroup" = nGroup)
}
if (type == 2) { ## NORMAL DATA
cat("Parameters are to be estimated for normally distributed data \n")
# Estimated parameters for normal data
myparameters = list("type" = type, "delta" = deltaPerFeat, "pooledSD" = SDpooled,
"m" = M, "d" = d, "nGroup" = nGroup)
}
if (type == 3) { ## BINARY DATA
cat("Parameters are to be estimated for binary data \n")
# Estimated parameters for normal data
myparameters = list("type" = type, "p1_p2" = meanPerGroup[,1]-meanPerGroup[,2], "p1" = meanPerGroup[,1],
"m" = M, "d" = d, "nGroup" = nGroup)
}
return(myparameters)
}
# Computing power or sample size given the rest of parameters -------------
getPower = function (parameters, power = NULL, n = NULL, fdr = 0.05,
null.effect = 0, max.n = 500) {
# Compute power for given n
if (is.null(power)) {
if (is.null(n)) stop("Please, indicate a value for either power or n arguments. \n")
if (parameters$type == 1) { # COUNT DATA (Negative Binomial)
potencia = fdr.power(fdr = fdr, n = n, pow.func = power.hart, eff.size = parameters$logFC, null.effect = null.effect,
mu = parameters$mu, sig = parameters$CV)
}
if (parameters$type == 2) { # NORMAL DATA
potencia = fdr.power(fdr = fdr, n = n, pow.func = power.twosampt, eff.size = parameters$delta, null.effect = null.effect,
sigma = parameters$pooledSD)
}
if (parameters$type == 3) { # BINARY DATA
potencia = fdr.power(fdr = fdr, n = n, pow.func = power.binary, eff.size = parameters$p1_p2, null.effect = null.effect,
p1 = parameters$p1)
}
return(potencia) } else { # Compute n for given power
if (parameters$type == 1) { # COUNT DATA
tamany = fdr.sampsize(fdr = fdr, ave.pow = power, pow.func = power.hart, eff.size = parameters$logFC,
null.effect = null.effect, mu = parameters$mu, sig = parameters$CV,
max.n = max.n, min.n = 2)$n
}
if (parameters$type == 2) { # NORMAL DATA
tamany = fdr.sampsize(fdr = fdr, ave.pow = power, pow.func = power.twosampt, eff.size = parameters$delta,
null.effect = null.effect, sigma = parameters$pooledSD,
max.n = max.n, min.n = 2)$n
}
if (parameters$type == 3) { # BINARY DATA
tamany = fdr.sampsize(fdr = fdr, ave.pow = power, pow.func = power.binary, eff.size = parameters$p1_p2,
null.effect = null.effect, p1 = parameters$p1,
max.n = max.n, min.n = 2)$n
}
return(max(ceiling(tamany), 2))
}
}
# Optimal sample size -----------------------------------------------------
optimalRep = function (parameters, omicPower = 0.6, averagePower = 0.85, fdr = 0.05, cost = 1,
equalSize = TRUE, max.size = 200, null.effect = 0) {
omics = names(parameters)
if (length(omicPower) == 1) omicPower = rep(omicPower, length(omics))
names(omicPower) = omics
if (equalSize) { ## Same sample size for all omics
# Compute n for each omic
n1 = sapply(omics, function (oo) getPower(parameters[[oo]],
power = omicPower[oo], n = NULL,
fdr = fdr, max.n = max.size,
null.effect = null.effect))
names(n1) = omics
n1max = max(n1, 2, na.rm = TRUE)
allPowers = sapply(omics, function (oo) getPower(parameters[[oo]],
power = NULL, n = n1max,
fdr = fdr))
n2 = n1max
if (n2 > max.size) stop("Maximum size allowed has been exceed.
Please, increase max.size parameter to get the optimal sample size. \n")
# Compute n to satisfy global power
while(sum(allPowers)/length(omics) < averagePower) {
n2 = n2 + 1
if (n2 > max.size) stop("Maximum size allowed has been exceed.
Please, increase max.size parameter to get the optimal sample size. \n")
allPowers = sapply(omics, function (oo) getPower(parameters[[oo]], power = NULL,
n = n2, fdr = fdr,
null.effect = null.effect))
}
return(list("n0" = n1, "n" = n2, "finalPower" = allPowers, "fdr" = fdr,
"omicPower" = omicPower, "averagePower" = averagePower, "cost" = cost))
} else { ## Different sample size for each omic
sss = optiSSnotEqual(parameters, fdr, cost, max.size, omicPower, averagePower,
null.effect)
n2 = as.numeric(sss[,"SampleSize"])
allPowers = as.numeric(sss[,"Power"])
names(allPowers) = names(n2) = sss[,"Omic"]
return(list("n0" = NA, "n" = n2, "finalPower" = allPowers, "fdr" = fdr,
"omicPower" = omicPower, "averagePower" = averagePower, "cost" = cost))
}
}
# Summary of results ------------------------------------------------------
powerSummary = function(parameters, optimalSampleSize) {
tabla = data.frame("omic" = names(parameters), "type" = sapply(parameters, function (x) x$type),
"numFeat" = sapply(parameters, function (x) x$m),
"minCohenD" = sapply(parameters, function (x) round(min(x$d, na.rm = TRUE),2)),
"maxCohenD" = sapply(parameters, function (x) round(max(x$d, na.rm = TRUE),2)),
"minPower" = optimalSampleSize$omicPower,
"averPower" = optimalSampleSize$averagePower,
"cost" = optimalSampleSize$cost,
"minSampleSize" = optimalSampleSize$n0,
"optSampleSize" = optimalSampleSize$n,
"power" = round(optimalSampleSize$finalPower,4))
print(tabla)
return(tabla)
}
# Plots for power study ---------------------------------------------------
powerPlot = function(parameters, optimalSampleSize, omicCol = NULL) {
if (is.null(omicCol)) {
if (length(parameters) > 12) {
stop("Too many omics to be plotted. Please, select a lower number of omics to plot. \n")
}
omicCol = colors()[c(554,89,111,512,17,586,132,428,601,568,86,390)]
omicCol = omicCol[1:length(parameters)]
}
omicShape = 1:length(parameters)
names(omicCol) = names(omicShape) = names(parameters)
## Power versus Sample Size
# Sample Sizes
nmax = max(optimalSampleSize$n)
ngroup = unique(as.numeric(sapply(parameters, function (x) x$nGroup)))
xMin = 2
xMax = round(max(nmax+20, (3*nmax - xMin)/2),0)
xValues = c(round(seq(xMin, xMax, (xMax - xMin)/10)), optimalSampleSize$n)
xValues = sort(unique(c(xValues, ngroup)))
# Powers
yValues = matrix(NA, ncol = length(parameters), nrow = length(xValues))
rownames(yValues) = xValues
colnames(yValues) = names(parameters)
for (i in 1:nrow(yValues)) {
for (j in 1:ncol(yValues)) {
yValues[i,j] = getPower(parameters[[j]], power = NULL, n = xValues[i], fdr = optimalSampleSize$fdr) ### null.effect
}
}
matplot(xValues, yValues, type = "l", lwd = 2, xlab = "Sample size", ylab = "Statistical power",
main = "Power vs Sample Size", col = omicCol, lty = omicShape)
optiSS = optimalSampleSize$n
if (length(optiSS) == 1) optiSS = rep(optiSS, length(parameters))
points(optiSS, diag(yValues[as.character(optiSS),]), pch = 15, col = omicCol, cex = 1.2)
legend("bottomright", names(parameters), lwd = 2, col = omicCol, lty = omicShape, bty = "n")
## Power vs Effect Size
# Quantiles of effect size
xValues = seq(0,0.75,0.05) # max P75
# Powers
yValues2 = matrix(NA, ncol = length(parameters), nrow = length(xValues))
rownames(yValues2) = xValues
colnames(yValues2) = names(parameters)
parameters2 = parameters
optiSS = optimalSampleSize$n
if (length(optiSS) == 1) optiSS = rep(optiSS, length(parameters))
percentiles = lapply(parameters, function (x) {quantile(x$d, probs = xValues, na.rm = TRUE)})
for (i in 1:nrow(yValues2)) {
for (j in 1:ncol(yValues2)) {
selefeat = which(parameters2[[j]]$d >= percentiles[[j]][i])
parameters2[[j]]$d = parameters2[[j]]$d[selefeat]
if (parameters2[[j]]$type == 1) {
parameters2[[j]]$logFC = parameters2[[j]]$logFC[selefeat]
parameters2[[j]]$pooledSD = parameters2[[j]]$pooledSD[selefeat]
parameters2[[j]]$CV = parameters2[[j]]$CV[selefeat]
parameters2[[j]]$delta = parameters2[[j]]$delta[selefeat]
parameters2[[j]]$mu = parameters2[[j]]$mu[selefeat]
}
if (parameters2[[j]]$type == 2) {
parameters2[[j]]$pooledSD = parameters2[[j]]$pooledSD[selefeat]
parameters2[[j]]$delta = parameters2[[j]]$delta[selefeat]
}
if (parameters2[[j]]$type == 3) {
parameters2[[j]]$p1_p2 = parameters2[[j]]$p1_p2[selefeat]
parameters2[[j]]$p1 = parameters2[[j]]$p1[selefeat]
}
yValues2[i,j] = getPower(parameters2[[j]], power = NULL, n = optiSS[j], fdr = optimalSampleSize$fdr)
}
}
if (!all(is.na(yValues2))) {
matplot(xValues*100, yValues2, type = "l", lwd = 2, xlab = "Percentiles for effect size cutoff", ylab = "Statistical power",
main = "Power vs Effect size", col = omicCol, lty = omicShape)
points(rep(0, length(parameters)), as.numeric(yValues2[1,]),
pch = 15, col = omicCol, cex = 1.2)
legend("bottomright", names(parameters), lwd = 2, col = omicCol, lty = omicShape, bty = "n")
}
## Data to plot
return(list("PowerVsSsampleSize" = yValues,
"PowerVsEffectSize" = yValues2))
}
# Computing optimal sample size when it is not equal for all omics ----------------------------------------------------------
optiSSnotEqual = function (parameters, fdr = 0.05, cost = 1, max.size = 100,
omicPower = 0.6, averagePower = 0.8, null.effect = 0) {
##### GENERATION OF MATRICES FOR THE PROBLEM
K = length(parameters) # number of omics
if (length(cost) < K) cost = rep(cost[1], K)
if (length(max.size) < K) max.size = rep(max.size[1], K)
if (length(omicPower) < K) omicPower = rep(omicPower[1], K)
num.var = sum(max.size) - length(max.size) ## sample size = 1 is not considered
# coeffs power;
# constraint sum(vars) = 1 (to have only 1 sample size); coeffs average power
myC = NULL # coeffs of objective function
# A1: coeffs of power per omic
# A3: sum(Zij) = 1 for each omic i
A1 = A3 = matrix(0, nrow = K, ncol = num.var)
# A2: coeffs for average power for all omics
A2 = NULL
for (k in 1:K) {
# coef.power --> A1, A2
# coef1 --> A3
coef.power = coef1 = rep(0, num.var)
for (i in 2:max.size[k]) {
myC = c(myC, cost[k]*i*2) # coefficients of objective function
# power of each (omic, sample size)
my.power = getPower(parameters[[k]], power = NULL, n = i, fdr = fdr,
null.effect = null.effect, max.n = max.size)
# coeff average power
A2 = c(A2, my.power)
if (k == 1) {
coef.power[i-1] = my.power
coef1[i-1] = 1
}
if (k > 1) {
coef.power[i-k+sum(max.size[1:(k-1)])] = my.power
coef1[i-k+sum(max.size[1:(k-1)])] = 1
}
}
A1[k,] = coef.power
A3[k,] = coef1
}
A2 = matrix(A2, nrow = 1, byrow = TRUE)
myA = rbind(A1, A2, A3)
mydir = c(rep(">=", K+1), rep("=", K))
myRHS = c(omicPower, K*averagePower, rep(1,K))
#### SOLUTION OF THE PROBLEM
mysol = lp(direction = "min", objective.in = myC, const.mat = myA,
const.dir = mydir, const.rhs = myRHS, all.int = TRUE, all.bin = TRUE)
if (mysol$status == 2) {
stop("No feasible solution was found for these requirements.")
} else {
myvars = unlist(sapply(1:K, function (k) paste(names(parameters)[k],
2:max.size[k], sep = "=")))
mysolution = myvars[which(mysol$solution == 1)]
mysolution = as.data.frame(do.call("rbind", strsplit(mysolution, "=")),
stringsAsFactors = FALSE)
colnames(mysolution) = c("Omic", "SampleSize")
mysolution = data.frame(mysolution, "OmicCost" = cost*as.numeric(mysolution[,2])*2,
"Power" = diag(A1[,mysol$solution == 1]))
return(mysolution)
}
}
# Wrapper function: MULTIPOWER --------------------------------------------
MultiPower = function(data, groups, type, omicPower = 0.6, averagePower = 0.85,
fdr = 0.05, cost = 1, equalSize = TRUE, max.size = 200, omicCol = NULL,
powerPlots = TRUE, null.effect = 0) {
parameters = lapply(1:length(data), function (i) {
cat(paste0("Estimating parameters for omic: ", names(data)[i], " \n"))
paramEst(data[[i]], groups[[i]], type[i])})
names(parameters) = names(data)
cat("Computing optimal sample size... \n")
optimalSampleSize = optimalRep(parameters, omicPower, averagePower, fdr, cost,
equalSize, max.size = max.size, null.effect)
resum = powerSummary(parameters, optimalSampleSize)
if (powerPlots) {
cat("Generating power plots... \n")
data2plot = powerPlot(parameters, optimalSampleSize, omicCol)
} else { data2plot = NULL }
return(list("parameters" = parameters,
"optimalSampleSize" = optimalSampleSize,
"summary" = resum,
"data2plot" = data2plot))
}
# postMultiPower ----------------------------------------------------------
postMultiPower = function(optResults, max.size = 5, omicCol = NULL) {
omics = names(optResults$parameters)
equalSS = TRUE
if (sum(is.na(optResults$summary$minSampleSize)) == nrow(optResults$summary)) equalSS = FALSE
maxD = round(min(optResults$summary$maxCohenD),1)
maxD = min(c(maxD, 4))
lasD = seq(0,maxD-0.1,0.1)
mySize = myPower = myM = matrix(NA, ncol = length(omics), nrow = length(lasD))
colnames(mySize) = colnames(myPower) = colnames(myM) = omics
rownames(mySize) = rownames(myPower) = rownames(myM) = paste0("d=", lasD)
mySize[1,] = optResults$summary$optSampleSize
myPower[1,] = optResults$summary$power
myM[1,] = sapply(optResults$parameters, function (x) x$m)
parameters2 = optResults$parameters
for (i in 2:nrow(mySize)) {
for (j in 1:ncol(mySize)) {
selefeat = which(parameters2[[j]]$d >= lasD[i])
parameters2[[j]]$d = parameters2[[j]]$d[selefeat]
if (parameters2[[j]]$type == 1) {
parameters2[[j]]$logFC = parameters2[[j]]$logFC[selefeat]
parameters2[[j]]$pooledSD = parameters2[[j]]$pooledSD[selefeat]
parameters2[[j]]$CV = parameters2[[j]]$CV[selefeat]
parameters2[[j]]$delta = parameters2[[j]]$delta[selefeat]
parameters2[[j]]$mu = parameters2[[j]]$mu[selefeat]
}
if (parameters2[[j]]$type == 2) {
parameters2[[j]]$pooledSD = parameters2[[j]]$pooledSD[selefeat]
parameters2[[j]]$delta = parameters2[[j]]$delta[selefeat]
}
if (parameters2[[j]]$type == 3) {
parameters2[[j]]$p1_p2 = parameters2[[j]]$p1_p2[selefeat]
parameters2[[j]]$p1 = parameters2[[j]]$p1[selefeat]
}
}
tmp = optimalRep(parameters2, omicPower = optResults$summary$minPower,
averagePower = optResults$summary$averPower[1],
fdr = optResults$optimalSampleSize$fdr, cost = optResults$summary$cost,
equalSize = equalSS, max.size = max(optResults$summary$optSampleSize, na.rm = TRUE))
mySize[i,] = tmp$n
myPower[i,] = tmp$finalPower
myM[i,] = sapply(parameters2, function (x) length(x$d))
}
# Post-results
myresult = list("SampleSize" = mySize, "Power" = myPower, "NumFeat" = myM, "d" = lasD)
# Plot
postPowerPlot(postResults = myresult, equalSize = equalSS, omicCol = omicCol, max.size = max.size)
return(myresult)
}
# postPowerPlot -----------------------------------------------------------
postPowerPlot = function(postResults, equalSize, omicCol = NULL, max.size = 10) {
if (is.null(omicCol)) {
omicCol = colors()[c(554,89,111,512,17,586,132,428,601,568,86,390)]
omicCol = omicCol[1:nrow(postResults$SampleSize)]
}
names(omicCol) = colnames(postResults$SampleSize)
if (min(postResults$SampleSize) > max.size) {
cat(paste0("The chosen sample size of ", max.size, " is not feasible. \n"))
max.size = min(postResults$SampleSize)
cat(paste0("A sample size of ", max.size, " will be plotted instead. \n"))
}
if (equalSize) {
fff = approxfun(postResults$SampleSize[,1], postResults$d)
myD = round(fff(max.size),1)
cat(paste0("For having a sample size of ", max.size, " and maintain the desired power, you need to remove features with Cohen's d below ", myD, ". \n"))
cat("The number of remaining features in each omic is: \n")
print(postResults$NumFeat[paste0("d=",myD),])
plot(postResults$d, postResults$SampleSize[,1], type = "l", lwd = 2, xlab = "Cohen's d cutoff",
ylab = "Number of replicates", main = "Sample size vs Cohen's d",
ylim = c(2, max(postResults$SampleSize)))
arrows(x0 = 0, y0 = max.size, x1 = myD, y1 = max.size, lty = 2, col = 2)
arrows(x0 = myD, y0 = max.size, x1 = myD, y1 = 2, lty = 2, col = 2)
text(min(postResults$d)+1, max(postResults$SampleSize, na.rm = TRUE)-2, paste0("Cohen's d = ", myD), col = 2)
} else {
fff = sapply(1:ncol(postResults$SampleSize), function (i) { fff = approxfun(postResults$SampleSize[,i], postResults$d)
return(fff(max.size)) })
myD = round(max(fff, na.rm = TRUE),2)
matplot(postResults$d, postResults$SampleSize, type = "l", lwd = 2, col = omicCol, lty = 1,
xlab = "Cohen's d", ylab = "Number of replicates", main = "Sample size vs Cohen's d",
ylim = c(2, max(postResults$SampleSize)))
legend("topright", colnames(postResults$SampleSize), lwd = 2, col = omicCol, bty = "n")
arrows(x0 = 0, y0 = max.size, x1 = myD, y1 = max.size, lty = 2, col = 1)
arrows(x0 = myD, y0 = max.size, x1 = myD, y1 = 2, lty = 2, col = 1)
text(mean(postResults$d), max(postResults$SampleSize, na.rm = TRUE),
paste0("Cohen's d = ", myD), col = 1, adj = 0.5)
}
mypar = par()
suppressWarnings(par(xpd = TRUE, mar = c(6.2,4,3,0.8)))
barplot(postResults$Power[c(1,min(which(postResults$d >= myD))),], col = rep(omicCol, each = 2),
beside = TRUE, las = 2, ylab = "Statistical power", ylim = c(0,1),
border = rep(omicCol, each = 2), density = rep(c(30,100), ncol(postResults$Power)))
legend(x = 0.5, y = 1.2, c("Optimal SS", "User's SS"), col = 1, density = c(30,100), ncol = 2, bty = "n")
suppressWarnings(par(mypar))
}
# Wrapper function MultiGroupPower ---------------------------------------------------------
MultiGroupPower = function(data, groups, type, comparisons = NULL,
omicPower = 0.6, averagePower = 0.85,
fdr = 0.05, cost = 1, equalSize = TRUE, max.size = 200, omicCol = NULL,
powerPlots = FALSE, summaryPlot = TRUE) {
grupsComuns = Reduce(intersect, groups)
if (is.null(comparisons)) { # Generating all possible comparisons
comparisons = combn(grupsComuns, m = 2)
} else { # Checking that required comparisons are possible for all omics
grupsComparats = unique(as.vector(comparisons))
if (!setequal(grupsComparats, grupsComuns)) stop("Groups to be compared are not available for all omics.")
}
nomsCompa = apply(comparisons, 2, paste, collapse = "_")
output = vector("list", length = length(nomsCompa)); names(output) = nomsCompa
for (i in 1:length(output)) {
cat(nomsCompa[i], sep = "\n")
quines = lapply(1:length(data), function (j) which(is.element(groups[[j]], comparisons[,i])))
data2 = lapply(1:length(data), function (j) data[[j]][,quines[[j]]]); names(data2) = names(data)
groups2 = lapply(1:length(data), function (j) groups[[j]][quines[[j]]]); names(groups2) = names(groups)
output[[i]] = MultiPower(data = data2, groups = groups2, type, omicPower, averagePower,
fdr, cost, equalSize, max.size, omicCol, powerPlots)
}
output$GlobalSummary = output[[1]]$summary
output$GlobalSummary[,"minSampleSize"] = apply(sapply(output[-length(output)], function(x) x$summary[,"minSampleSize"]), 1,
function (y) {
if (length(unique(y)) == 1) return(unique(y))
if (length(unique(y)) != 1) return(paste(range(y, na.rm = T), collapse = "-"))})
output$GlobalSummary[,"optSampleSize"] = apply(sapply(output[-length(output)], function(x) x$summary[,"optSampleSize"]),
1, max, na.rm = TRUE)
tmpSS = sapply(output[-length(output)], function(x) x$summary[,"optSampleSize"])
tmpPower = sapply(output[-length(output)], function(x) x$summary[,"power"])
output$GlobalSummary[,"power"] = sapply(1:nrow(tmpSS), function (i) tmpPower[i,which.max(tmpSS[i,])])
cat("=============================== \n")
cat("Global summary \n")
cat("=============================== \n")
print(output$GlobalSummary)
if (summaryPlot) MultiCompaPlot(multiOutput = output, omicCol = omicCol, equalSize = equalSize,
legendLoc = "bottom")
return(output)
}
# Plot for multiple comparisons -------------------------------------------
MultiCompaPlot = function(multiOutput, omicCol = NULL, equalSize, legendLoc = "bottomright") {
if (is.null(omicCol)) {
if (length(multiOutput[[1]]$parameters) > 12) {
stop("Too many omics to be plotted. \n")
}
omicCol = colors()[c(554,89,111,512,17,586,132,428,601,568,86,390)]
omicCol = omicCol[1:length(multiOutput[[1]]$parameters)]
}
omicShape = 1:length(multiOutput[[1]]$parameters)
names(omicCol) = names(omicShape) = names(multiOutput[[1]]$parameters)
## Comparisons versus Sample Size
if (equalSize) {
apintar = sapply(multiOutput[-length(multiOutput)], function (x) x$summary[,"minSampleSize"])
rownames(apintar) = names(multiOutput[[1]]$parameters)
laopt = multiOutput$GlobalSummary[1,"optSampleSize"]
optComp = sapply(multiOutput[-length(multiOutput)], function (x) x$summary[1,"optSampleSize"])
matplot(1:ncol(apintar), t(apintar), type = "l", lwd = 2, xlab = "Comparisons", ylab = "Sample Size",
main = "Sample Size per Comparison", col = omicCol, lty = omicShape, xaxt='n')
axis(side = 1, at=1:ncol(apintar), labels=colnames(apintar))
abline(h = laopt, lty = 1, lwd = 4)
points(1:ncol(apintar), optComp, pch = 15, col = 1, cex = 1.3)
legend(legendLoc, c(rownames(apintar), " ", "Comparison Optimal SS", "Global Optimal SS"), lwd = 2, col = c(omicCol,"white", 1,1),
lty = c(omicShape,1,NA,1), bty = "n", pch = c(rep(NA, nrow(apintar)+1), 15, NA), title = "Min SS per comparison", cex = 0.8)
} else {
apintar = sapply(multiOutput[-length(multiOutput)], function (x) x$summary[,"optSampleSize"])
rownames(apintar) = names(multiOutput[[1]]$parameters)
laOpt = multiOutput$GlobalSummary[,"optSampleSize"]
apintar = data.frame(apintar, "Optimal" = laOpt, check.names = FALSE)
matplot(1:ncol(apintar), t(apintar), type = "l", lwd = 2, xlab = "Comparisons", ylab = "Sample Size",
main = "Sample Size per Comparison", col = omicCol, lty = omicShape, xaxt='n')
axis(side = 1, at=1:ncol(apintar), labels=colnames(apintar))
points(rep(ncol(apintar), nrow(apintar)), laOpt, pch = 15, col = omicCol, cex = 1.3)
legend(legendLoc, rownames(apintar), lwd = 2, col = omicCol, cex = 0.8,
lty = omicShape, bty = "n")
}
## Comparisons vs Power
apintar = sapply(multiOutput[-length(multiOutput)], function (x) x$summary[,"power"])
rownames(apintar) = names(multiOutput[[1]]$parameters)
optPow = multiOutput$GlobalSummary[,"power"]
apintar = data.frame(apintar, "Optimal" = optPow, check.names = FALSE)
matplot(1:ncol(apintar), t(apintar), type = "l", lwd = 2, xlab = "Comparisons", ylab = "Statistical Power",
main = "Power per Comparison at Optimal SS", col = omicCol, lty = omicShape, xaxt='n')
axis(side = 1, at=1:ncol(apintar), labels=colnames(apintar))
points(rep(ncol(apintar), nrow(apintar)), optPow, pch = 15, col = omicCol, cex = 1.3)
legend(legendLoc, rownames(apintar), lwd = 2, col = omicCol,
lty = omicShape, bty = "n", cex = 0.8)
}
# Filtering data with Cohen's d cutoff ------------------------------------
CohenFilter = function (data, d, parameters) {
if (length(d) == 1) d = rep(d, length(data))
if (length(d) != length(data)) {
stop("Please, provide a single value for d or as many values a omic data types in data")
}
dataF = data
for (i in 1:length(data)) {
quitar = which(parameters[[i]]$d < d[i])
dataF[[i]] = dataF[[i]][-quitar,]
}
return(dataF)
}