Diff of /docs/source/index.rst [000000] .. [061d85]

Switch to unified view

a b/docs/source/index.rst
1
Mowgli: Multi Omics Wasserstein inteGrative anaLysIs
2
====================================================
3
4
.. toctree::
5
   :hidden:
6
   :maxdepth: 1
7
   :glob:
8
   :caption: Getting started
9
10
   vignettes/*
11
12
.. toctree::
13
   :hidden:
14
   :maxdepth: 3
15
   :caption: API
16
17
   models
18
   pl
19
   tl
20
   utils
21
   score
22
23
24
Mowgli is a novel method for the integration of paired multi-omics data with any type and number of omics, combining integrative Nonnegative Matrix Factorization and Optimal Transport. `Read the preprint here <https://www.biorxiv.org/content/10.1101/2023.02.02.526825v2>`_ and `fork the code here <https://github.com/cantinilab/Mowgli>`_!
25
26
.. image:: ../../figure.png
27
   :alt: Explanatory figure
28
29
Install the package
30
-------------------
31
32
Mowgli is implemented as a Python package seamlessly integrated within the scverse ecosystem, in particular Muon and Scanpy.
33
34
via PyPI (recommended)
35
^^^^^^^^^^^^^^^^^^^^^^
36
37
.. code-block:: bash
38
39
   pip install mowgli
40
41
via GitHub (development version)
42
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
43
44
.. code-block:: bash
45
46
   git clone git@github.com:cantinilab/Mowgli.git
47
   pip install ./Mowgli/
48
49
Getting started
50
---------------
51
52
Mowgli takes as an input a Muon object and populates its `obsm` and `uns` fiels with the embeddings and dictionaries, respectively. Visit the **Getting started** and **API** sections for more documentation and tutorials.
53
54
You may download a 10X Multiome demo dataset at https://figshare.com/s/4c8e72cbb188d8e1cce8.
55
56
.. code-block:: python
57
58
   from mowgli import models
59
   import muon as mu
60
   import scanpy as sc
61
62
   # Load data into a Muon object.
63
   mdata = mu.load_h5mu("my_data.h5mu")
64
65
   # Initialize and train the model.
66
   model = models.MowgliModel(latent_dim=15)
67
   model.train(mdata)
68
69
   # Visualize the embedding with UMAP.
70
   sc.pp.neighbors(mdata, use_rep="W_OT")
71
   sc.tl.umap(mdata)
72
   sc.pl.umap(mdata)
73
74
Citation
75
--------
76
77
.. code-block:: bibtex
78
79
  @article{huizing2023paired,
80
     title={Paired single-cell multi-omics data integration with Mowgli},
81
     author={Huizing, Geert-Jan and Deutschmann, Ina Maria and Peyr{\'e}, Gabriel and Cantini, Laura},
82
     journal={Nature Communications},
83
     volume={14},
84
     number={1},
85
     pages={7711},
86
     year={2023},
87
     publisher={Nature Publishing Group UK London}
88
   }