|
a |
|
b/docs/source/index.rst |
|
|
1 |
Mowgli: Multi Omics Wasserstein inteGrative anaLysIs |
|
|
2 |
==================================================== |
|
|
3 |
|
|
|
4 |
.. toctree:: |
|
|
5 |
:hidden: |
|
|
6 |
:maxdepth: 1 |
|
|
7 |
:glob: |
|
|
8 |
:caption: Getting started |
|
|
9 |
|
|
|
10 |
vignettes/* |
|
|
11 |
|
|
|
12 |
.. toctree:: |
|
|
13 |
:hidden: |
|
|
14 |
:maxdepth: 3 |
|
|
15 |
:caption: API |
|
|
16 |
|
|
|
17 |
models |
|
|
18 |
pl |
|
|
19 |
tl |
|
|
20 |
utils |
|
|
21 |
score |
|
|
22 |
|
|
|
23 |
|
|
|
24 |
Mowgli is a novel method for the integration of paired multi-omics data with any type and number of omics, combining integrative Nonnegative Matrix Factorization and Optimal Transport. `Read the preprint here <https://www.biorxiv.org/content/10.1101/2023.02.02.526825v2>`_ and `fork the code here <https://github.com/cantinilab/Mowgli>`_! |
|
|
25 |
|
|
|
26 |
.. image:: ../../figure.png |
|
|
27 |
:alt: Explanatory figure |
|
|
28 |
|
|
|
29 |
Install the package |
|
|
30 |
------------------- |
|
|
31 |
|
|
|
32 |
Mowgli is implemented as a Python package seamlessly integrated within the scverse ecosystem, in particular Muon and Scanpy. |
|
|
33 |
|
|
|
34 |
via PyPI (recommended) |
|
|
35 |
^^^^^^^^^^^^^^^^^^^^^^ |
|
|
36 |
|
|
|
37 |
.. code-block:: bash |
|
|
38 |
|
|
|
39 |
pip install mowgli |
|
|
40 |
|
|
|
41 |
via GitHub (development version) |
|
|
42 |
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ |
|
|
43 |
|
|
|
44 |
.. code-block:: bash |
|
|
45 |
|
|
|
46 |
git clone git@github.com:cantinilab/Mowgli.git |
|
|
47 |
pip install ./Mowgli/ |
|
|
48 |
|
|
|
49 |
Getting started |
|
|
50 |
--------------- |
|
|
51 |
|
|
|
52 |
Mowgli takes as an input a Muon object and populates its `obsm` and `uns` fiels with the embeddings and dictionaries, respectively. Visit the **Getting started** and **API** sections for more documentation and tutorials. |
|
|
53 |
|
|
|
54 |
You may download a 10X Multiome demo dataset at https://figshare.com/s/4c8e72cbb188d8e1cce8. |
|
|
55 |
|
|
|
56 |
.. code-block:: python |
|
|
57 |
|
|
|
58 |
from mowgli import models |
|
|
59 |
import muon as mu |
|
|
60 |
import scanpy as sc |
|
|
61 |
|
|
|
62 |
# Load data into a Muon object. |
|
|
63 |
mdata = mu.load_h5mu("my_data.h5mu") |
|
|
64 |
|
|
|
65 |
# Initialize and train the model. |
|
|
66 |
model = models.MowgliModel(latent_dim=15) |
|
|
67 |
model.train(mdata) |
|
|
68 |
|
|
|
69 |
# Visualize the embedding with UMAP. |
|
|
70 |
sc.pp.neighbors(mdata, use_rep="W_OT") |
|
|
71 |
sc.tl.umap(mdata) |
|
|
72 |
sc.pl.umap(mdata) |
|
|
73 |
|
|
|
74 |
Citation |
|
|
75 |
-------- |
|
|
76 |
|
|
|
77 |
.. code-block:: bibtex |
|
|
78 |
|
|
|
79 |
@article{huizing2023paired, |
|
|
80 |
title={Paired single-cell multi-omics data integration with Mowgli}, |
|
|
81 |
author={Huizing, Geert-Jan and Deutschmann, Ina Maria and Peyr{\'e}, Gabriel and Cantini, Laura}, |
|
|
82 |
journal={Nature Communications}, |
|
|
83 |
volume={14}, |
|
|
84 |
number={1}, |
|
|
85 |
pages={7711}, |
|
|
86 |
year={2023}, |
|
|
87 |
publisher={Nature Publishing Group UK London} |
|
|
88 |
} |