--- a +++ b/docs/source/index.rst @@ -0,0 +1,88 @@ +Mowgli: Multi Omics Wasserstein inteGrative anaLysIs +==================================================== + +.. toctree:: + :hidden: + :maxdepth: 1 + :glob: + :caption: Getting started + + vignettes/* + +.. toctree:: + :hidden: + :maxdepth: 3 + :caption: API + + models + pl + tl + utils + score + + +Mowgli is a novel method for the integration of paired multi-omics data with any type and number of omics, combining integrative Nonnegative Matrix Factorization and Optimal Transport. `Read the preprint here <https://www.biorxiv.org/content/10.1101/2023.02.02.526825v2>`_ and `fork the code here <https://github.com/cantinilab/Mowgli>`_! + +.. image:: ../../figure.png + :alt: Explanatory figure + +Install the package +------------------- + +Mowgli is implemented as a Python package seamlessly integrated within the scverse ecosystem, in particular Muon and Scanpy. + +via PyPI (recommended) +^^^^^^^^^^^^^^^^^^^^^^ + +.. code-block:: bash + + pip install mowgli + +via GitHub (development version) +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +.. code-block:: bash + + git clone git@github.com:cantinilab/Mowgli.git + pip install ./Mowgli/ + +Getting started +--------------- + +Mowgli takes as an input a Muon object and populates its `obsm` and `uns` fiels with the embeddings and dictionaries, respectively. Visit the **Getting started** and **API** sections for more documentation and tutorials. + +You may download a 10X Multiome demo dataset at https://figshare.com/s/4c8e72cbb188d8e1cce8. + +.. code-block:: python + + from mowgli import models + import muon as mu + import scanpy as sc + + # Load data into a Muon object. + mdata = mu.load_h5mu("my_data.h5mu") + + # Initialize and train the model. + model = models.MowgliModel(latent_dim=15) + model.train(mdata) + + # Visualize the embedding with UMAP. + sc.pp.neighbors(mdata, use_rep="W_OT") + sc.tl.umap(mdata) + sc.pl.umap(mdata) + +Citation +-------- + +.. code-block:: bibtex + + @article{huizing2023paired, + title={Paired single-cell multi-omics data integration with Mowgli}, + author={Huizing, Geert-Jan and Deutschmann, Ina Maria and Peyr{\'e}, Gabriel and Cantini, Laura}, + journal={Nature Communications}, + volume={14}, + number={1}, + pages={7711}, + year={2023}, + publisher={Nature Publishing Group UK London} + }