[04057e]: / AE_run.py

Download this file

180 lines (152 with data), 9.2 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Time : 2021/8/7 14:43
# @Author : Li Xiao
# @File : AE_run.py
import pandas as pd
import numpy as np
import argparse
from tqdm import tqdm
import autoencoder_model
import torch
import torch.utils.data as Data
def setup_seed(seed):
torch.manual_seed(seed)
np.random.seed(seed)
def work(data, in_feas, lr=0.001, bs=32, epochs=100, device=torch.device('cpu'), a=0.4, b=0.3, c=0.3, mode=0, topn=100):
#name of sample
sample_name = data['Sample'].tolist()
#change data to a Tensor
X,Y = data.iloc[:,1:].values, np.zeros(data.shape[0])
TX, TY = torch.tensor(X, dtype=torch.float, device=device), torch.tensor(Y, dtype=torch.float, device=device)
#train a AE model
if mode == 0 or mode == 1:
print('Training model...')
Tensor_data = Data.TensorDataset(TX, TY)
train_loader = Data.DataLoader(Tensor_data, batch_size=bs, shuffle=True)
#initialize a model
mmae = autoencoder_model.MMAE(in_feas, latent_dim=100, a=a, b=b, c=c)
mmae.to(device)
mmae.train()
mmae.train_MMAE(train_loader, learning_rate=lr, device=device, epochs=epochs)
mmae.eval() #before save and test, fix the variables
torch.save(mmae, 'model/AE/MMAE_model.pkl')
#load saved model, used for reducing dimensions
if mode == 0 or mode == 2:
print('Get the latent layer output...')
mmae = torch.load('model/AE/MMAE_model.pkl')
omics_1 = TX[:, :in_feas[0]]
omics_2 = TX[:, in_feas[0]:in_feas[0]+in_feas[1]]
omics_3 = TX[:, in_feas[0]+in_feas[1]:in_feas[0]+in_feas[1]+in_feas[2]]
latent_data, decoded_omics_1, decoded_omics_2, decoded_omics_3 = mmae.forward(omics_1, omics_2, omics_3)
latent_df = pd.DataFrame(latent_data.detach().cpu().numpy())
latent_df.insert(0, 'Sample', sample_name)
#save the integrated data(dim=100)
latent_df.to_csv('result/latent_data.csv', header=True, index=False)
print('Extract features...')
extract_features(data, in_feas, epochs, topn)
return
def extract_features(data, in_feas, epochs, topn=100):
# extract features
#get each omics data
data_omics_1 = data.iloc[:, 1: 1+in_feas[0]]
data_omics_2 = data.iloc[:, 1+in_feas[0]: 1+in_feas[0]+in_feas[1]]
data_omics_3 = data.iloc[:, 1+in_feas[0]+in_feas[1]: 1+in_feas[0]+in_feas[1]+in_feas[2]]
#get all features of each omics data
feas_omics_1 = data_omics_1.columns.tolist()
feas_omics_2 = data_omics_2.columns.tolist()
feas_omics_3 = data_omics_3.columns.tolist()
#calculate the standard deviation of each feature
std_omics_1 = data_omics_1.std(axis=0)
std_omics_2 = data_omics_2.std(axis=0)
std_omics_3 = data_omics_3.std(axis=0)
#record top N features every 10 epochs
topn_omics_1 = pd.DataFrame()
topn_omics_2 = pd.DataFrame()
topn_omics_3 = pd.DataFrame()
#used for feature extraction, epoch_ls = [10,20,...], if epochs % 10 != 0, add the last epoch
epoch_ls = list(range(10, epochs+10,10))
if epochs %10 != 0:
epoch_ls.append(epochs)
for epoch in tqdm(epoch_ls):
#load model
mmae = torch.load('model/AE/model_{}.pkl'.format(epoch))
#get model variables
model_dict = mmae.state_dict()
#get the absolute value of weights, the shape of matrix is (n_features, latent_layer_dim)
weight_omics1 = np.abs(model_dict['encoder_omics_1.0.weight'].detach().cpu().numpy().T)
weight_omics2 = np.abs(model_dict['encoder_omics_2.0.weight'].detach().cpu().numpy().T)
weight_omics3 = np.abs(model_dict['encoder_omics_3.0.weight'].detach().cpu().numpy().T)
weight_omics1_df = pd.DataFrame(weight_omics1, index=feas_omics_1)
weight_omics2_df = pd.DataFrame(weight_omics2, index=feas_omics_2)
weight_omics3_df = pd.DataFrame(weight_omics3, index=feas_omics_3)
#calculate the weight sum of each feature --> sum of each row
weight_omics1_df['Weight_sum'] = weight_omics1_df.apply(lambda x:x.sum(), axis=1)
weight_omics2_df['Weight_sum'] = weight_omics2_df.apply(lambda x:x.sum(), axis=1)
weight_omics3_df['Weight_sum'] = weight_omics3_df.apply(lambda x:x.sum(), axis=1)
weight_omics1_df['Std'] = std_omics_1
weight_omics2_df['Std'] = std_omics_2
weight_omics3_df['Std'] = std_omics_3
#importance = Weight * Std
weight_omics1_df['Importance'] = weight_omics1_df['Weight_sum']*weight_omics1_df['Std']
weight_omics2_df['Importance'] = weight_omics2_df['Weight_sum']*weight_omics2_df['Std']
weight_omics3_df['Importance'] = weight_omics3_df['Weight_sum']*weight_omics3_df['Std']
#select top N features
fea_omics_1_top = weight_omics1_df.nlargest(topn, 'Importance').index.tolist()
fea_omics_2_top = weight_omics2_df.nlargest(topn, 'Importance').index.tolist()
fea_omics_3_top = weight_omics3_df.nlargest(topn, 'Importance').index.tolist()
#save top N features in a dataframe
col_name = 'epoch_'+str(epoch)
topn_omics_1[col_name] = fea_omics_1_top
topn_omics_2[col_name] = fea_omics_2_top
topn_omics_3[col_name] = fea_omics_3_top
#all of top N features
topn_omics_1.to_csv('result/topn_omics_1.csv', header=True, index=False)
topn_omics_2.to_csv('result/topn_omics_2.csv', header=True, index=False)
topn_omics_3.to_csv('result/topn_omics_3.csv', header=True, index=False)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--mode', '-m', type=int, choices=[0,1,2], default=0,
help='Mode 0: train&intagrate, Mode 1: just train, Mode 2: just intagrate, default: 0.')
parser.add_argument('--seed', '-s', type=int, default=0, help='Random seed, default=0.')
parser.add_argument('--path1', '-p1', type=str, required=True, help='The first omics file name.')
parser.add_argument('--path2', '-p2', type=str, required=True, help='The second omics file name.')
parser.add_argument('--path3', '-p3', type=str, required=True, help='The third omics file name.')
parser.add_argument('--batchsize', '-bs', type=int, default=32, help='Training batchszie, default: 32.')
parser.add_argument('--learningrate', '-lr', type=float, default=0.001, help='Learning rate, default: 0.001.')
parser.add_argument('--epoch', '-e', type=int, default=100, help='Training epochs, default: 100.')
parser.add_argument('--latent', '-l', type=int, default=100, help='The latent layer dim, default: 100.')
parser.add_argument('--device', '-d', type=str, choices=['cpu', 'gpu'], default='cpu', help='Training on cpu or gpu, default: cpu.')
parser.add_argument('--a', '-a', type=float, default=0.6, help='[0,1], float, weight for the first omics data')
parser.add_argument('--b', '-b', type=float, default=0.1, help='[0,1], float, weight for the second omics data.')
parser.add_argument('--c', '-c', type=float, default=0.3, help='[0,1], float, weight for the third omics data.')
parser.add_argument('--topn', '-n', type=int, default=100, help='Extract top N features every 10 epochs, default: 100.')
args = parser.parse_args()
#read data
omics_data1 = pd.read_csv(args.path1, header=0, index_col=None)
omics_data2 = pd.read_csv(args.path2, header=0, index_col=None)
omics_data3 = pd.read_csv(args.path3, header=0, index_col=None)
#Check whether GPUs are available
device = torch.device('cpu')
if args.device == 'gpu':
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
#set random seed
setup_seed(args.seed)
if args.a + args.b + args.c != 1.0:
print('The sum of weights must be 1.')
exit(1)
#dims of each omics data
in_feas = [omics_data1.shape[1] - 1, omics_data2.shape[1] - 1, omics_data3.shape[1] - 1]
omics_data1.rename(columns={omics_data1.columns.tolist()[0]: 'Sample'}, inplace=True)
omics_data2.rename(columns={omics_data2.columns.tolist()[0]: 'Sample'}, inplace=True)
omics_data3.rename(columns={omics_data3.columns.tolist()[0]: 'Sample'}, inplace=True)
omics_data1.sort_values(by='Sample', ascending=True, inplace=True)
omics_data2.sort_values(by='Sample', ascending=True, inplace=True)
omics_data3.sort_values(by='Sample', ascending=True, inplace=True)
#merge the multi-omics data, calculate on common samples
Merge_data = pd.merge(omics_data1, omics_data2, on='Sample', how='inner')
Merge_data = pd.merge(Merge_data, omics_data3, on='Sample', how='inner')
Merge_data.sort_values(by='Sample', ascending=True, inplace=True)
#train model, reduce dimensions and extract features
work(Merge_data, in_feas, lr=args.learningrate, bs=args.batchsize, epochs=args.epoch, device=device, a=args.a, b=args.b, c=args.c, mode=args.mode, topn=args.topn)
print('Success! Results can be seen in result file')