#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Time : 2021/8/7 14:43
# @Author : Li Xiao
# @File : AE_run.py
import pandas as pd
import numpy as np
import argparse
from tqdm import tqdm
import autoencoder_model
import torch
import torch.utils.data as Data
def setup_seed(seed):
torch.manual_seed(seed)
np.random.seed(seed)
def work(data, in_feas, lr=0.001, bs=32, epochs=100, device=torch.device('cpu'), a=0.4, b=0.3, c=0.3, mode=0, topn=100):
#name of sample
sample_name = data['Sample'].tolist()
#change data to a Tensor
X,Y = data.iloc[:,1:].values, np.zeros(data.shape[0])
TX, TY = torch.tensor(X, dtype=torch.float, device=device), torch.tensor(Y, dtype=torch.float, device=device)
#train a AE model
if mode == 0 or mode == 1:
print('Training model...')
Tensor_data = Data.TensorDataset(TX, TY)
train_loader = Data.DataLoader(Tensor_data, batch_size=bs, shuffle=True)
#initialize a model
mmae = autoencoder_model.MMAE(in_feas, latent_dim=100, a=a, b=b, c=c)
mmae.to(device)
mmae.train()
mmae.train_MMAE(train_loader, learning_rate=lr, device=device, epochs=epochs)
mmae.eval() #before save and test, fix the variables
torch.save(mmae, 'model/AE/MMAE_model.pkl')
#load saved model, used for reducing dimensions
if mode == 0 or mode == 2:
print('Get the latent layer output...')
mmae = torch.load('model/AE/MMAE_model.pkl')
omics_1 = TX[:, :in_feas[0]]
omics_2 = TX[:, in_feas[0]:in_feas[0]+in_feas[1]]
omics_3 = TX[:, in_feas[0]+in_feas[1]:in_feas[0]+in_feas[1]+in_feas[2]]
latent_data, decoded_omics_1, decoded_omics_2, decoded_omics_3 = mmae.forward(omics_1, omics_2, omics_3)
latent_df = pd.DataFrame(latent_data.detach().cpu().numpy())
latent_df.insert(0, 'Sample', sample_name)
#save the integrated data(dim=100)
latent_df.to_csv('result/latent_data.csv', header=True, index=False)
print('Extract features...')
extract_features(data, in_feas, epochs, topn)
return
def extract_features(data, in_feas, epochs, topn=100):
# extract features
#get each omics data
data_omics_1 = data.iloc[:, 1: 1+in_feas[0]]
data_omics_2 = data.iloc[:, 1+in_feas[0]: 1+in_feas[0]+in_feas[1]]
data_omics_3 = data.iloc[:, 1+in_feas[0]+in_feas[1]: 1+in_feas[0]+in_feas[1]+in_feas[2]]
#get all features of each omics data
feas_omics_1 = data_omics_1.columns.tolist()
feas_omics_2 = data_omics_2.columns.tolist()
feas_omics_3 = data_omics_3.columns.tolist()
#calculate the standard deviation of each feature
std_omics_1 = data_omics_1.std(axis=0)
std_omics_2 = data_omics_2.std(axis=0)
std_omics_3 = data_omics_3.std(axis=0)
#record top N features every 10 epochs
topn_omics_1 = pd.DataFrame()
topn_omics_2 = pd.DataFrame()
topn_omics_3 = pd.DataFrame()
#used for feature extraction, epoch_ls = [10,20,...], if epochs % 10 != 0, add the last epoch
epoch_ls = list(range(10, epochs+10,10))
if epochs %10 != 0:
epoch_ls.append(epochs)
for epoch in tqdm(epoch_ls):
#load model
mmae = torch.load('model/AE/model_{}.pkl'.format(epoch))
#get model variables
model_dict = mmae.state_dict()
#get the absolute value of weights, the shape of matrix is (n_features, latent_layer_dim)
weight_omics1 = np.abs(model_dict['encoder_omics_1.0.weight'].detach().cpu().numpy().T)
weight_omics2 = np.abs(model_dict['encoder_omics_2.0.weight'].detach().cpu().numpy().T)
weight_omics3 = np.abs(model_dict['encoder_omics_3.0.weight'].detach().cpu().numpy().T)
weight_omics1_df = pd.DataFrame(weight_omics1, index=feas_omics_1)
weight_omics2_df = pd.DataFrame(weight_omics2, index=feas_omics_2)
weight_omics3_df = pd.DataFrame(weight_omics3, index=feas_omics_3)
#calculate the weight sum of each feature --> sum of each row
weight_omics1_df['Weight_sum'] = weight_omics1_df.apply(lambda x:x.sum(), axis=1)
weight_omics2_df['Weight_sum'] = weight_omics2_df.apply(lambda x:x.sum(), axis=1)
weight_omics3_df['Weight_sum'] = weight_omics3_df.apply(lambda x:x.sum(), axis=1)
weight_omics1_df['Std'] = std_omics_1
weight_omics2_df['Std'] = std_omics_2
weight_omics3_df['Std'] = std_omics_3
#importance = Weight * Std
weight_omics1_df['Importance'] = weight_omics1_df['Weight_sum']*weight_omics1_df['Std']
weight_omics2_df['Importance'] = weight_omics2_df['Weight_sum']*weight_omics2_df['Std']
weight_omics3_df['Importance'] = weight_omics3_df['Weight_sum']*weight_omics3_df['Std']
#select top N features
fea_omics_1_top = weight_omics1_df.nlargest(topn, 'Importance').index.tolist()
fea_omics_2_top = weight_omics2_df.nlargest(topn, 'Importance').index.tolist()
fea_omics_3_top = weight_omics3_df.nlargest(topn, 'Importance').index.tolist()
#save top N features in a dataframe
col_name = 'epoch_'+str(epoch)
topn_omics_1[col_name] = fea_omics_1_top
topn_omics_2[col_name] = fea_omics_2_top
topn_omics_3[col_name] = fea_omics_3_top
#all of top N features
topn_omics_1.to_csv('result/topn_omics_1.csv', header=True, index=False)
topn_omics_2.to_csv('result/topn_omics_2.csv', header=True, index=False)
topn_omics_3.to_csv('result/topn_omics_3.csv', header=True, index=False)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--mode', '-m', type=int, choices=[0,1,2], default=0,
help='Mode 0: train&intagrate, Mode 1: just train, Mode 2: just intagrate, default: 0.')
parser.add_argument('--seed', '-s', type=int, default=0, help='Random seed, default=0.')
parser.add_argument('--path1', '-p1', type=str, required=True, help='The first omics file name.')
parser.add_argument('--path2', '-p2', type=str, required=True, help='The second omics file name.')
parser.add_argument('--path3', '-p3', type=str, required=True, help='The third omics file name.')
parser.add_argument('--batchsize', '-bs', type=int, default=32, help='Training batchszie, default: 32.')
parser.add_argument('--learningrate', '-lr', type=float, default=0.001, help='Learning rate, default: 0.001.')
parser.add_argument('--epoch', '-e', type=int, default=100, help='Training epochs, default: 100.')
parser.add_argument('--latent', '-l', type=int, default=100, help='The latent layer dim, default: 100.')
parser.add_argument('--device', '-d', type=str, choices=['cpu', 'gpu'], default='cpu', help='Training on cpu or gpu, default: cpu.')
parser.add_argument('--a', '-a', type=float, default=0.6, help='[0,1], float, weight for the first omics data')
parser.add_argument('--b', '-b', type=float, default=0.1, help='[0,1], float, weight for the second omics data.')
parser.add_argument('--c', '-c', type=float, default=0.3, help='[0,1], float, weight for the third omics data.')
parser.add_argument('--topn', '-n', type=int, default=100, help='Extract top N features every 10 epochs, default: 100.')
args = parser.parse_args()
#read data
omics_data1 = pd.read_csv(args.path1, header=0, index_col=None)
omics_data2 = pd.read_csv(args.path2, header=0, index_col=None)
omics_data3 = pd.read_csv(args.path3, header=0, index_col=None)
#Check whether GPUs are available
device = torch.device('cpu')
if args.device == 'gpu':
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
#set random seed
setup_seed(args.seed)
if args.a + args.b + args.c != 1.0:
print('The sum of weights must be 1.')
exit(1)
#dims of each omics data
in_feas = [omics_data1.shape[1] - 1, omics_data2.shape[1] - 1, omics_data3.shape[1] - 1]
omics_data1.rename(columns={omics_data1.columns.tolist()[0]: 'Sample'}, inplace=True)
omics_data2.rename(columns={omics_data2.columns.tolist()[0]: 'Sample'}, inplace=True)
omics_data3.rename(columns={omics_data3.columns.tolist()[0]: 'Sample'}, inplace=True)
omics_data1.sort_values(by='Sample', ascending=True, inplace=True)
omics_data2.sort_values(by='Sample', ascending=True, inplace=True)
omics_data3.sort_values(by='Sample', ascending=True, inplace=True)
#merge the multi-omics data, calculate on common samples
Merge_data = pd.merge(omics_data1, omics_data2, on='Sample', how='inner')
Merge_data = pd.merge(Merge_data, omics_data3, on='Sample', how='inner')
Merge_data.sort_values(by='Sample', ascending=True, inplace=True)
#train model, reduce dimensions and extract features
work(Merge_data, in_feas, lr=args.learningrate, bs=args.batchsize, epochs=args.epoch, device=device, a=args.a, b=args.b, c=args.c, mode=args.mode, topn=args.topn)
print('Success! Results can be seen in result file')