|
a |
|
b/autoencoder_model.py |
|
|
1 |
#!/usr/bin/env python |
|
|
2 |
# -*- coding: utf-8 -*- |
|
|
3 |
# @Time : 2021/8/7 14:01 |
|
|
4 |
# @Author : Li Xiao |
|
|
5 |
# @File : autoencoder_model.py |
|
|
6 |
import torch |
|
|
7 |
from torch import nn |
|
|
8 |
from matplotlib import pyplot as plt |
|
|
9 |
|
|
|
10 |
class MMAE(nn.Module): |
|
|
11 |
def __init__(self, in_feas_dim, latent_dim, a=0.4, b=0.3, c=0.3): |
|
|
12 |
''' |
|
|
13 |
:param in_feas_dim: a list, input dims of omics data |
|
|
14 |
:param latent_dim: dim of latent layer |
|
|
15 |
:param a: weight of omics data type 1 |
|
|
16 |
:param b: weight of omics data type 2 |
|
|
17 |
:param c: weight of omics data type 3 |
|
|
18 |
''' |
|
|
19 |
super(MMAE, self).__init__() |
|
|
20 |
self.a = a |
|
|
21 |
self.b = b |
|
|
22 |
self.c = c |
|
|
23 |
self.in_feas = in_feas_dim |
|
|
24 |
self.latent = latent_dim |
|
|
25 |
|
|
|
26 |
#encoders, multi channel input |
|
|
27 |
self.encoder_omics_1 = nn.Sequential( |
|
|
28 |
nn.Linear(self.in_feas[0], self.latent), |
|
|
29 |
nn.BatchNorm1d(self.latent), |
|
|
30 |
nn.Sigmoid() |
|
|
31 |
) |
|
|
32 |
self.encoder_omics_2 = nn.Sequential( |
|
|
33 |
nn.Linear(self.in_feas[1], self.latent), |
|
|
34 |
nn.BatchNorm1d(self.latent), |
|
|
35 |
nn.Sigmoid() |
|
|
36 |
) |
|
|
37 |
self.encoder_omics_3 = nn.Sequential( |
|
|
38 |
nn.Linear(self.in_feas[2], self.latent), |
|
|
39 |
nn.BatchNorm1d(self.latent), |
|
|
40 |
nn.Sigmoid() |
|
|
41 |
) |
|
|
42 |
#decoders |
|
|
43 |
self.decoder_omics_1 = nn.Sequential(nn.Linear(self.latent, self.in_feas[0])) |
|
|
44 |
self.decoder_omics_2 = nn.Sequential(nn.Linear(self.latent, self.in_feas[1])) |
|
|
45 |
self.decoder_omics_3 = nn.Sequential(nn.Linear(self.latent, self.in_feas[2])) |
|
|
46 |
|
|
|
47 |
#Variable initialization |
|
|
48 |
for name, param in MMAE.named_parameters(self): |
|
|
49 |
if 'weight' in name: |
|
|
50 |
torch.nn.init.normal_(param, mean=0, std=0.1) |
|
|
51 |
if 'bias' in name: |
|
|
52 |
torch.nn.init.constant_(param, val=0) |
|
|
53 |
|
|
|
54 |
def forward(self, omics_1, omics_2, omics_3): |
|
|
55 |
''' |
|
|
56 |
:param omics_1: omics data 1 |
|
|
57 |
:param omics_2: omics data 2 |
|
|
58 |
:param omics_3: omics data 3 |
|
|
59 |
''' |
|
|
60 |
encoded_omics_1 = self.encoder_omics_1(omics_1) |
|
|
61 |
encoded_omics_2 = self.encoder_omics_2(omics_2) |
|
|
62 |
encoded_omics_3 = self.encoder_omics_3(omics_3) |
|
|
63 |
latent_data = torch.mul(encoded_omics_1, self.a) + torch.mul(encoded_omics_2, self.b) + torch.mul(encoded_omics_3, self.c) |
|
|
64 |
decoded_omics_1 = self.decoder_omics_1(latent_data) |
|
|
65 |
decoded_omics_2 = self.decoder_omics_2(latent_data) |
|
|
66 |
decoded_omics_3 = self.decoder_omics_3(latent_data) |
|
|
67 |
return latent_data, decoded_omics_1, decoded_omics_2, decoded_omics_3 |
|
|
68 |
|
|
|
69 |
def train_MMAE(self, train_loader, learning_rate=0.001, device=torch.device('cpu'), epochs=100): |
|
|
70 |
optimizer = torch.optim.Adam(self.parameters(), lr=learning_rate) |
|
|
71 |
loss_fn = nn.MSELoss() |
|
|
72 |
loss_ls = [] |
|
|
73 |
for epoch in range(epochs): |
|
|
74 |
train_loss_sum = 0.0 #Record the loss of each epoch |
|
|
75 |
for (x,y) in train_loader: |
|
|
76 |
omics_1 = x[:, :self.in_feas[0]] |
|
|
77 |
omics_2 = x[:, self.in_feas[0]:self.in_feas[0]+self.in_feas[1]] |
|
|
78 |
omics_3 = x[:, self.in_feas[0]+self.in_feas[1]:self.in_feas[0]+self.in_feas[1]+self.in_feas[2]] |
|
|
79 |
|
|
|
80 |
omics_1 = omics_1.to(device) |
|
|
81 |
omics_2 = omics_2.to(device) |
|
|
82 |
omics_3 = omics_3.to(device) |
|
|
83 |
|
|
|
84 |
latent_data, decoded_omics_1, decoded_omics_2, decoded_omics_3 = self.forward(omics_1, omics_2, omics_3) |
|
|
85 |
loss = self.a*loss_fn(decoded_omics_1, omics_1)+ self.b*loss_fn(decoded_omics_2, omics_2) + self.c*loss_fn(decoded_omics_3, omics_3) |
|
|
86 |
optimizer.zero_grad() |
|
|
87 |
loss.backward() |
|
|
88 |
optimizer.step() |
|
|
89 |
|
|
|
90 |
train_loss_sum += loss.sum().item() |
|
|
91 |
|
|
|
92 |
loss_ls.append(train_loss_sum) |
|
|
93 |
print('epoch: %d | loss: %.4f' % (epoch + 1, train_loss_sum)) |
|
|
94 |
|
|
|
95 |
#save the model every 10 epochs, used for feature extraction |
|
|
96 |
if (epoch+1) % 10 ==0: |
|
|
97 |
torch.save(self, 'model/AE/model_{}.pkl'.format(epoch+1)) |
|
|
98 |
|
|
|
99 |
#draw the training loss curve |
|
|
100 |
plt.plot([i + 1 for i in range(epochs)], loss_ls) |
|
|
101 |
plt.xlabel('epochs') |
|
|
102 |
plt.ylabel('loss') |
|
|
103 |
plt.savefig('result/AE_train_loss.png') |