--- a +++ b/SNF.py @@ -0,0 +1,61 @@ +#!/usr/bin/env python +# -*- coding: utf-8 -*- +# @Time : 2021/8/8 14:01 +# @Author : Li Xiao +# @File : SNF.py +import snf +import pandas as pd +import numpy as np +import argparse +import seaborn as sns + +if __name__ == '__main__': + parser = argparse.ArgumentParser() + parser.add_argument('--path', '-p', type=str, nargs=3, required=True, + help='Location of input files, must be 3 files') + parser.add_argument('--metric', '-m', type=str, choices=['braycurtis', 'canberra', 'chebyshev', 'cityblock', + 'correlation', 'cosine', 'dice', 'euclidean', 'hamming', 'jaccard', 'kulsinski', + 'mahalanobis', 'matching', 'minkowski', 'rogerstanimoto', 'russellrao', 'seuclidean', + 'sokalmichener', 'sokalsneath', 'sqeuclidean', 'wminkowski', 'yule'], default='sqeuclidean', + help='Distance metric to compute. Must be one of available metrics in :py:func scipy.spatial.distance.pdist.') + parser.add_argument('--K', '-k', type=int, default=20, + help='(0, N) int, number of neighbors to consider when creating affinity matrix. See Notes of :py:func snf.compute.affinity_matrix for more details. Default: 20.') + parser.add_argument('--mu', '-mu', type=int, default=0.5, + help='(0, 1) float, Normalization factor to scale similarity kernel when constructing affinity matrix. See Notes of :py:func snf.compute.affinity_matrix for more details. Default: 0.5.') + args = parser.parse_args() + + print('Load data files...') + omics_data_1 = pd.read_csv(args.path[0], header=0, index_col=None) + omics_data_2 = pd.read_csv(args.path[1], header=0, index_col=None) + omics_data_3 = pd.read_csv(args.path[2], header=0, index_col=None) + print(omics_data_1.shape, omics_data_2.shape, omics_data_3.shape) + + if omics_data_1.shape[0] != omics_data_2.shape[0] or omics_data_1.shape[0] != omics_data_3.shape[0]: + print('Input files must have same samples.') + exit(1) + + omics_data_1.rename(columns={omics_data_1.columns.tolist()[0]: 'Sample'}, inplace=True) + omics_data_2.rename(columns={omics_data_2.columns.tolist()[0]: 'Sample'}, inplace=True) + omics_data_3.rename(columns={omics_data_3.columns.tolist()[0]: 'Sample'}, inplace=True) + + # align samples of different data + omics_data_1.sort_values(by='Sample', ascending=True, inplace=True) + omics_data_2.sort_values(by='Sample', ascending=True, inplace=True) + omics_data_3.sort_values(by='Sample', ascending=True, inplace=True) + + print('Start similarity network fusion...') + affinity_nets = snf.make_affinity([omics_data_1.iloc[:, 1:].values.astype(np.float), omics_data_2.iloc[:, 1:].values.astype(np.float), omics_data_3.iloc[:, 1:].values.astype(np.float)], + metric=args.metric, K=args.K, mu=args.mu) + + fused_net =snf.snf(affinity_nets, K=args.K) + + print('Save fused adjacency matrix...') + fused_df = pd.DataFrame(fused_net) + fused_df.columns = omics_data_1['Sample'].tolist() + fused_df.index = omics_data_1['Sample'].tolist() + fused_df.to_csv('result/SNF_fused_matrix.csv', header=True, index=True) + + np.fill_diagonal(fused_df.values, 0) + fig = sns.clustermap(fused_df.iloc[:, :], cmap='vlag', figsize=(8,8),) + fig.savefig('result/SNF_fused_clustermap.png', dpi=300) + print('Success! Results can be seen in result file') \ No newline at end of file