--- a +++ b/AE_run.py @@ -0,0 +1,179 @@ +#!/usr/bin/env python +# -*- coding: utf-8 -*- +# @Time : 2021/8/7 14:43 +# @Author : Li Xiao +# @File : AE_run.py +import pandas as pd +import numpy as np +import argparse +from tqdm import tqdm +import autoencoder_model +import torch +import torch.utils.data as Data + +def setup_seed(seed): + torch.manual_seed(seed) + np.random.seed(seed) + +def work(data, in_feas, lr=0.001, bs=32, epochs=100, device=torch.device('cpu'), a=0.4, b=0.3, c=0.3, mode=0, topn=100): + #name of sample + sample_name = data['Sample'].tolist() + + #change data to a Tensor + X,Y = data.iloc[:,1:].values, np.zeros(data.shape[0]) + TX, TY = torch.tensor(X, dtype=torch.float, device=device), torch.tensor(Y, dtype=torch.float, device=device) + #train a AE model + if mode == 0 or mode == 1: + print('Training model...') + Tensor_data = Data.TensorDataset(TX, TY) + train_loader = Data.DataLoader(Tensor_data, batch_size=bs, shuffle=True) + + #initialize a model + mmae = autoencoder_model.MMAE(in_feas, latent_dim=100, a=a, b=b, c=c) + mmae.to(device) + mmae.train() + mmae.train_MMAE(train_loader, learning_rate=lr, device=device, epochs=epochs) + mmae.eval() #before save and test, fix the variables + torch.save(mmae, 'model/AE/MMAE_model.pkl') + + #load saved model, used for reducing dimensions + if mode == 0 or mode == 2: + print('Get the latent layer output...') + mmae = torch.load('model/AE/MMAE_model.pkl') + omics_1 = TX[:, :in_feas[0]] + omics_2 = TX[:, in_feas[0]:in_feas[0]+in_feas[1]] + omics_3 = TX[:, in_feas[0]+in_feas[1]:in_feas[0]+in_feas[1]+in_feas[2]] + latent_data, decoded_omics_1, decoded_omics_2, decoded_omics_3 = mmae.forward(omics_1, omics_2, omics_3) + latent_df = pd.DataFrame(latent_data.detach().cpu().numpy()) + latent_df.insert(0, 'Sample', sample_name) + #save the integrated data(dim=100) + latent_df.to_csv('result/latent_data.csv', header=True, index=False) + + print('Extract features...') + extract_features(data, in_feas, epochs, topn) + return + +def extract_features(data, in_feas, epochs, topn=100): + # extract features + #get each omics data + data_omics_1 = data.iloc[:, 1: 1+in_feas[0]] + data_omics_2 = data.iloc[:, 1+in_feas[0]: 1+in_feas[0]+in_feas[1]] + data_omics_3 = data.iloc[:, 1+in_feas[0]+in_feas[1]: 1+in_feas[0]+in_feas[1]+in_feas[2]] + + #get all features of each omics data + feas_omics_1 = data_omics_1.columns.tolist() + feas_omics_2 = data_omics_2.columns.tolist() + feas_omics_3 = data_omics_3.columns.tolist() + + #calculate the standard deviation of each feature + std_omics_1 = data_omics_1.std(axis=0) + std_omics_2 = data_omics_2.std(axis=0) + std_omics_3 = data_omics_3.std(axis=0) + + #record top N features every 10 epochs + topn_omics_1 = pd.DataFrame() + topn_omics_2 = pd.DataFrame() + topn_omics_3 = pd.DataFrame() + + #used for feature extraction, epoch_ls = [10,20,...], if epochs % 10 != 0, add the last epoch + epoch_ls = list(range(10, epochs+10,10)) + if epochs %10 != 0: + epoch_ls.append(epochs) + for epoch in tqdm(epoch_ls): + #load model + mmae = torch.load('model/AE/model_{}.pkl'.format(epoch)) + #get model variables + model_dict = mmae.state_dict() + + #get the absolute value of weights, the shape of matrix is (n_features, latent_layer_dim) + weight_omics1 = np.abs(model_dict['encoder_omics_1.0.weight'].detach().cpu().numpy().T) + weight_omics2 = np.abs(model_dict['encoder_omics_2.0.weight'].detach().cpu().numpy().T) + weight_omics3 = np.abs(model_dict['encoder_omics_3.0.weight'].detach().cpu().numpy().T) + + weight_omics1_df = pd.DataFrame(weight_omics1, index=feas_omics_1) + weight_omics2_df = pd.DataFrame(weight_omics2, index=feas_omics_2) + weight_omics3_df = pd.DataFrame(weight_omics3, index=feas_omics_3) + + #calculate the weight sum of each feature --> sum of each row + weight_omics1_df['Weight_sum'] = weight_omics1_df.apply(lambda x:x.sum(), axis=1) + weight_omics2_df['Weight_sum'] = weight_omics2_df.apply(lambda x:x.sum(), axis=1) + weight_omics3_df['Weight_sum'] = weight_omics3_df.apply(lambda x:x.sum(), axis=1) + weight_omics1_df['Std'] = std_omics_1 + weight_omics2_df['Std'] = std_omics_2 + weight_omics3_df['Std'] = std_omics_3 + + #importance = Weight * Std + weight_omics1_df['Importance'] = weight_omics1_df['Weight_sum']*weight_omics1_df['Std'] + weight_omics2_df['Importance'] = weight_omics2_df['Weight_sum']*weight_omics2_df['Std'] + weight_omics3_df['Importance'] = weight_omics3_df['Weight_sum']*weight_omics3_df['Std'] + + #select top N features + fea_omics_1_top = weight_omics1_df.nlargest(topn, 'Importance').index.tolist() + fea_omics_2_top = weight_omics2_df.nlargest(topn, 'Importance').index.tolist() + fea_omics_3_top = weight_omics3_df.nlargest(topn, 'Importance').index.tolist() + + #save top N features in a dataframe + col_name = 'epoch_'+str(epoch) + topn_omics_1[col_name] = fea_omics_1_top + topn_omics_2[col_name] = fea_omics_2_top + topn_omics_3[col_name] = fea_omics_3_top + + #all of top N features + topn_omics_1.to_csv('result/topn_omics_1.csv', header=True, index=False) + topn_omics_2.to_csv('result/topn_omics_2.csv', header=True, index=False) + topn_omics_3.to_csv('result/topn_omics_3.csv', header=True, index=False) + +if __name__ == '__main__': + parser = argparse.ArgumentParser() + parser.add_argument('--mode', '-m', type=int, choices=[0,1,2], default=0, + help='Mode 0: train&intagrate, Mode 1: just train, Mode 2: just intagrate, default: 0.') + parser.add_argument('--seed', '-s', type=int, default=0, help='Random seed, default=0.') + parser.add_argument('--path1', '-p1', type=str, required=True, help='The first omics file name.') + parser.add_argument('--path2', '-p2', type=str, required=True, help='The second omics file name.') + parser.add_argument('--path3', '-p3', type=str, required=True, help='The third omics file name.') + parser.add_argument('--batchsize', '-bs', type=int, default=32, help='Training batchszie, default: 32.') + parser.add_argument('--learningrate', '-lr', type=float, default=0.001, help='Learning rate, default: 0.001.') + parser.add_argument('--epoch', '-e', type=int, default=100, help='Training epochs, default: 100.') + parser.add_argument('--latent', '-l', type=int, default=100, help='The latent layer dim, default: 100.') + parser.add_argument('--device', '-d', type=str, choices=['cpu', 'gpu'], default='cpu', help='Training on cpu or gpu, default: cpu.') + parser.add_argument('--a', '-a', type=float, default=0.6, help='[0,1], float, weight for the first omics data') + parser.add_argument('--b', '-b', type=float, default=0.1, help='[0,1], float, weight for the second omics data.') + parser.add_argument('--c', '-c', type=float, default=0.3, help='[0,1], float, weight for the third omics data.') + parser.add_argument('--topn', '-n', type=int, default=100, help='Extract top N features every 10 epochs, default: 100.') + args = parser.parse_args() + + #read data + omics_data1 = pd.read_csv(args.path1, header=0, index_col=None) + omics_data2 = pd.read_csv(args.path2, header=0, index_col=None) + omics_data3 = pd.read_csv(args.path3, header=0, index_col=None) + + #Check whether GPUs are available + device = torch.device('cpu') + if args.device == 'gpu': + device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') + + #set random seed + setup_seed(args.seed) + + if args.a + args.b + args.c != 1.0: + print('The sum of weights must be 1.') + exit(1) + + #dims of each omics data + in_feas = [omics_data1.shape[1] - 1, omics_data2.shape[1] - 1, omics_data3.shape[1] - 1] + omics_data1.rename(columns={omics_data1.columns.tolist()[0]: 'Sample'}, inplace=True) + omics_data2.rename(columns={omics_data2.columns.tolist()[0]: 'Sample'}, inplace=True) + omics_data3.rename(columns={omics_data3.columns.tolist()[0]: 'Sample'}, inplace=True) + + omics_data1.sort_values(by='Sample', ascending=True, inplace=True) + omics_data2.sort_values(by='Sample', ascending=True, inplace=True) + omics_data3.sort_values(by='Sample', ascending=True, inplace=True) + + #merge the multi-omics data, calculate on common samples + Merge_data = pd.merge(omics_data1, omics_data2, on='Sample', how='inner') + Merge_data = pd.merge(Merge_data, omics_data3, on='Sample', how='inner') + Merge_data.sort_values(by='Sample', ascending=True, inplace=True) + + #train model, reduce dimensions and extract features + work(Merge_data, in_feas, lr=args.learningrate, bs=args.batchsize, epochs=args.epoch, device=device, a=args.a, b=args.b, c=args.c, mode=args.mode, topn=args.topn) + print('Success! Results can be seen in result file')