[7a0be0]: / R / 2-2.manipulate.R

Download this file

788 lines (723 with data), 25.8 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
# ==========2.1 manipulate========
#' Set basic attributes from totu table
#'
#' @param go metanet an igraph object
#' @param ... some data.frames to annotate go
#' @param vertex_group choose which column to be vertex_group (map to vertex_shape)
#' @param vertex_class choose which column to be vertex_class (map to vertex_color)
#' @param vertex_size choose which column to be vertex_size (map to vertex_size)
#' @param edge_type choose which column to be edge_type (map to edge_color)
#' @param edge_class choose which column to be edge_class (map to edge_linetype)
#' @param edge_width choose which column to be edge_width (map to edge_width)
#' @param node_break node_break if v_class is numeric, default: 5
#' @param edge_break edge_break if e_type is numeric, default: 5
#' @param initialize initialize, default: TRUE
#'
#' @return a metanet object
#' @export
#' @family build
#' @examples
#' data("otutab", package = "pcutils")
#' t(otutab) -> totu
#' metadata[, 3:10] -> env
#'
#' data("c_net")
#' co_net <- c_net_set(co_net, taxonomy, data.frame("Abundance" = colSums(totu)),
#' vertex_class = "Phylum", vertex_size = "Abundance"
#' )
#' co_net2 <- c_net_set(co_net2, taxonomy, data.frame(name = colnames(env), env = colnames(env)),
#' vertex_class = c("Phylum", "env")
#' )
#' co_net2 <- c_net_set(co_net2, data.frame("Abundance" = colSums(totu)), vertex_size = "Abundance")
c_net_set <- function(go, ..., vertex_group = "v_group", vertex_class = "v_class", vertex_size = "size",
edge_type = "e_type", edge_class = "e_class", edge_width = "width",
node_break = 5, edge_break = 5, initialize = TRUE) {
size <- e_class <- width <- NULL
c_net_update(go, verbose = FALSE) -> go
name <- v_group <- v_class <- e_type <- color <- NULL
# annotation vertex
anno_dfs <- list(...)
if (length(anno_dfs) > 0) {
anno_dfs2 <- list()
for (i in seq_len(length(anno_dfs))) {
x <- anno_dfs[[i]]
if ("name" %in% colnames(x)) {
rownames(x) <- x$name
x <- dplyr::select(x, -name)
}
anno_dfs2[[i]] <- x
}
if (any(duplicated(lapply(anno_dfs2, names) %>% unlist()))) stop("Duplicated column names in your annotation tables, please check!")
Reduce(\(x, y)merge(x, y, by = "row.names", all = TRUE) %>%
tibble::column_to_rownames("Row.names"), anno_dfs2) -> all_anno
anno_vertex(go, all_anno) -> go
}
get_v(go) -> v_index
get_e(go) -> e_index
# set something
# !!!这里的set要改成跟c_net_update一样的逻辑
if (!setequal(vertex_group, "v_group")) dplyr::select(v_index, v_group, !!vertex_group) %>% condance() -> v_index$v_group
if (!setequal(vertex_class, "v_class")) {
old_color <- twocol2vector(v_index[, c("v_class", "color")])
new_color_name <- c()
# 给每一个v_group加上v_class调整颜色
# 可能某一个group用numeric做v_class,所以要分开上色
for (i in unique(v_index$v_group)) {
tmp_index <- v_index[v_index$v_group == i, ]
tmp_v_class <- dplyr::select(tmp_index, v_class, !!vertex_class) %>% condance()
if (identical(tmp_v_class, tmp_index$v_class)) {
new_color_name <- c(new_color_name, unique(tmp_index$v_class))
next
}
if (is.numeric(tmp_v_class)) {
tmp_v_color <- color_generate(tmp_v_class, n_break = node_break, mode = "v")
tmp_v_class <- color_generate(tmp_v_class, n_break = node_break, mode = "label")
v_index[v_index$v_group == i, "color"] <- tmp_v_color
} else {
new_color_name <- c(new_color_name, unique(tmp_index$v_class))
}
v_index[v_index$v_group == i, "v_class"] <- as.character(tmp_v_class)
}
# 总体分类颜色是否改变,没变的话就不该,变了的话全部重新赋
new_color_name <- unique(new_color_name)
if (!all(new_color_name %in% names(old_color))) {
new_color <- setNames(pcutils::get_cols(length(new_color_name), pal = default_v_color), new_color_name)
v_index$color <- condance(data.frame(
v_index$color,
pcutils::tidai(v_index$v_class, new_color)
))
}
}
if (!setequal(vertex_size, "size")) dplyr::select(v_index, size, !!vertex_size) %>% condance() -> v_index$size
if (!setequal(edge_type, "e_type")) {
tmp_e_type <- dplyr::select(e_index, e_type, !!edge_type) %>% condance()
if (!identical(tmp_e_type, e_index$e_type)) {
tmp_e_color <- color_generate(tmp_e_type, edge_break, mode = "e")
tmp_e_type <- color_generate(tmp_e_type, edge_break, mode = "label")
e_index$e_type <- tmp_e_type
e_index$color <- tmp_e_color
}
}
if (!setequal(edge_class, "e_class")) dplyr::select(e_index, e_class, !!edge_class) %>% condance() -> e_index$e_class
if (!setequal(edge_width, "width")) dplyr::select(e_index, width, !!edge_width) %>% condance() -> e_index$width
as.list(v_index) -> igraph::vertex.attributes(go)
as.list(e_index) -> igraph::edge.attributes(go)
c_net_update(go, initialize = initialize, verbose = FALSE) -> go2
return(go2)
}
#' Is this object a metanet object?
#'
#' @param go a test object
#'
#' @return logical
#' @export
#' @aliases is.metanet
#' @family manipulate
#' @examples
#' data(c_net)
#' is_metanet(co_net)
is_metanet <- function(go) {
is.igraph(go) & inherits(go, "metanet")
}
#' Get vertex information
#'
#' @param go metanet object
#' @param index attribute name, default: NULL
#' @family manipulate
#' @return data.frame
#' @export
get_v <- function(go, index = NULL) {
# 规定name只能为字符
if (is.null(V(go)$name)) V(go)$name <- as.character(V(go))
# df <- as.data.frame(igraph::vertex.attributes(go))
igraph::as_data_frame(go, what = "vertices") -> df
df <- dplyr::select(df, name, dplyr::everything())
rownames(df) <- NULL
if (!is.null(index)) {
return(dplyr::select(df, !!index))
} else {
return(df)
}
}
#' Get edge information
#' @param go metanet object
#' @param index attribute name, default: NULL
#' @return data.frame
#' @family manipulate
#' @export
get_e <- function(go, index = NULL) {
id <- NULL
tmp_e <- cbind_new(igraph::as_data_frame(go), data.frame(id = seq_len(igraph::ecount(go))))
tmp_e <- dplyr::select(tmp_e, id, dplyr::everything())
if (!is.null(index)) {
return(dplyr::select(tmp_e, !!index))
} else {
return(tmp_e)
}
}
#' Get network information
#'
#' @param go metanet object
#' @param index attribute name, default: NULL
#' @param simple logical, get simple index
#' @family manipulate
#' @return data.frame
#' @export
get_n <- function(go, index = NULL, simple = FALSE) {
gls <- igraph::graph.attributes(go)
if (simple) {
gls <- lapply(gls, \(x){
if (inherits(x, "data.frame")) {
return(NULL)
}
if (is.array(x)) {
return(NULL)
}
if (is.list(x)) {
return(NULL)
}
if (length(x) > 1) {
return(NULL)
}
return(x)
})
} else {
gls <- lapply(gls, \(x){
if (inherits(x, "data.frame")) {
return(paste0(ncol(x), "-columns df"))
}
if (is.array(x)) {
return(paste0(length(x), "-elements ", class(x)))
}
if (is.list(x)) {
return(paste0(length(x), "-elements ", class(x)))
}
if (length(x) > 1) {
return(paste0(length(x), "-elements vector"))
}
return(x)
})
}
df <- as.data.frame(do.call(cbind, gls))
if (!is.null(index)) {
return(dplyr::select(df, !!index))
} else {
return(df)
}
}
#' Filter a network according to some attributes
#'
#' @param go metanet object
#' @param ... some attributes of vertex and edge
#' @param mode "v" or "e"
#'
#' @return metanet
#' @export
#' @family manipulate
#' @examples
#' data("multi_net")
#' c_net_filter(multi1, v_group %in% c("omic1", "omic2"))
c_net_filter <- function(go, ..., mode = "v") {
if (mode == "v") {
go1 <- filter_v(go, ...)
} else if (mode == "e") {
go1 <- filter_e(go, ...)
} else {
stop("mode should be 'v' or 'e'")
}
if (length(V(go1)) == 0) {
message("The network is empty.")
}
go1
}
filter_v <- function(go, ...) {
get_v(go) -> tmp_v
tmp_v <- dplyr::filter(tmp_v, ...)
tmp_v$name -> vid
igraph::subgraph(go, vid) -> go1
class(go1) <- c("metanet", "igraph")
go1
}
filter_e <- function(go, ...) {
get_e(go) -> tmp_e
tmp_e <- dplyr::filter(tmp_e, ...)
tmp_e$id -> eid
igraph::subgraph.edges(go, eid) -> go1
class(go1) <- c("metanet", "igraph")
go1
}
#' Union two networks
#'
#' @param go1 metanet object
#' @param go2 metanet object
#'
#' @return metanet
#' @export
#' @family manipulate
#' @examples
#' data("c_net")
#' co_net_union <- c_net_union(co_net, co_net2)
#' c_net_plot(co_net_union)
c_net_union <- function(go1, go2) {
tmp_v1 <- get_v(go1)
tmp_v2 <- get_v(go2)
cols <- c("name", "label", "size", "v_group", "shape", "v_class", "color")
tmp_v <- rbind(tmp_v1[cols], tmp_v2[cols])
message("Duplicated vertexes: ", sum(duplicated(tmp_v$name)), "\nUse the attributes of the first network.")
tmp_v <- tmp_v[!duplicated(tmp_v$name), ]
tmp_e1 <- get_e(go1)
tmp_e2 <- get_e(go2)
cols <- c("from", "to", "e_type", "color", "e_class", "lty", "width")
tmp_e <- rbind(tmp_e1[cols], tmp_e2[cols])
message("Duplicated edges: ", sum(duplicated(tmp_e[, c("from", "to")])), "\nUse the attributes of the first network.")
tmp_e <- tmp_e[!duplicated(tmp_e[, c("from", "to")]), ]
go <- igraph::union(go1, go2)
go <- clean_igraph(go, direct = FALSE)
go <- c_net_annotate(go, tmp_v, mode = "v")
go <- c_net_annotate(go, tmp_e, mode = "e")
go <- c_net_annotate(go, list(n_type = "combine_net"), mode = "n")
go <- c_net_update(go, initialize = TRUE)
go
}
#' Annotate a metanet
#'
#' @param go metanet object
#' @param anno_tab a dataframe using to annotate (mode v, e), or a list (mode n)
#' @param mode "v" for vertex, "e" for edge, "n" for network
#' @param verbose logical
#'
#' @return a annotated metanet object
#' @export
#' @family manipulate
#' @examples
#' data("c_net")
#' anno <- data.frame("name" = "s__Pelomonas_puraquae", new_atr = "new")
#' co_net_new <- c_net_annotate(co_net, anno, mode = "v")
#' get_v(co_net_new, c("name", "new_atr"))
#'
#' anno <- data.frame("from" = "s__Pelomonas_puraquae", "to" = "s__un_g__Rhizobium", new_atr = "new")
#' co_net_new <- c_net_annotate(co_net, anno, mode = "e")
#' get_e(co_net_new, c("from", "to", "new_atr"))
#'
#' co_net_new <- c_net_annotate(co_net, list(new_atr = "new"), mode = "n")
#' get_n(co_net_new)
c_net_annotate <- function(go, anno_tab, mode = "v", verbose = TRUE) {
mode <- match.arg(mode, c("v", "e", "n"))
if (mode == "v") {
anno_vertex(go, anno_tab, verbose = verbose) -> go
} else if (mode == "e") {
anno_edge(go, anno_tab, verbose = verbose) -> go
} else if (mode == "n") {
igraph::graph.attributes(go) <-
pcutils::update_param(igraph::graph.attributes(go), anno_tab)
}
go
}
#' Use data.frame to annotate vertexes of metanet
#'
#' @param go metanet object
#' @param verbose logical
#' @param anno_tab a dataframe using to annotate (with rowname or a "name" column)
#'
#' @return a annotated metanet object
#' @aliases anno_node
#' @export
#' @family manipulate
#' @examples
#' data("c_net")
#' data("otutab", package = "pcutils")
#' anno_vertex(co_net, taxonomy)
anno_vertex <- function(go, anno_tab, verbose = TRUE) {
if (is.null(anno_tab)) {
return(go)
}
get_v(go) -> v_atr
if (!"name" %in% colnames(anno_tab)) rownames(anno_tab) -> anno_tab$name
if (any(duplicated(anno_tab$name))) {
stop(
"Duplicated name in annotation tables: ",
paste0(anno_tab$name[duplicated(anno_tab$name)], collapse = ", ")
)
}
v_atr <- dplyr::left_join(v_atr, anno_tab, by = "name", suffix = c(".x", ""))
grep(".x", colnames(v_atr), value = TRUE) %>% gsub(".x", "", .) -> du
if (length(du) > 0) message(length(du), (" attributes will be overwrited:\n"), paste0(du, collapse = ", "), "\n")
v_atr %>% dplyr::select(!dplyr::ends_with(".x")) -> v_atr
as.list(v_atr) -> igraph::vertex.attributes(go)
return(go)
}
#' Use dataframe to annotate edges of an igraph
#'
#' @param go metanet an igraph object
#' @param verbose logical
#' @param anno_tab a dataframe using to annotate (with rowname or a name column)
#'
#' @return a annotated igraph object
#' @export
#' @family manipulate
#' @examples
#' data("c_net")
#' anno <- data.frame("from" = "s__Pelomonas_puraquae", "to" = "s__un_g__Rhizobium", new_atr = "new")
#' anno_edge(co_net, anno) -> anno_net
anno_edge <- function(go, anno_tab, verbose = TRUE) {
name <- NULL
if (is.null(anno_tab)) {
return(go)
}
get_e(go) -> e_atr
if (all(c("from", "to") %in% colnames(anno_tab))) {
e_atr <- dplyr::left_join(e_atr, anno_tab, by = c("from", "to"), suffix = c(".x", ""))
grep(".x", colnames(e_atr), value = TRUE) %>% gsub(".x", "", .) -> du
if (length(du) > 0) {
if (verbose) message(length(du), (" attributes will be overwrited:\n"), paste0(du, collapse = ","), "\n")
}
e_atr %>% dplyr::select(!dplyr::ends_with(".x")) -> e_atr
} else {
if (verbose) message("No 'from' and 'to' columns in annotation table, will use 'name_from' and 'name_to' instead.")
if (!"name" %in% colnames(anno_tab)) rownames(anno_tab) -> anno_tab$name
anno_tab %>% dplyr::select(name, dplyr::everything()) -> anno_tab
# from
tmp <- anno_tab
colnames(tmp) <- paste0(colnames(anno_tab), "_from")
e_atr <- dplyr::left_join(e_atr, tmp, by = c("from" = "name_from"), suffix = c(".x", ""))
grep(".x", colnames(e_atr), value = TRUE) %>% gsub(".x", "", .) -> du
if (length(du) > 0) {
if (verbose) message(length(du), (" attributes will be overwrited:\n"), paste0(du, collapse = ","), "\n")
}
e_atr %>% dplyr::select(!dplyr::ends_with(".x")) -> e_atr
# to
tmp <- anno_tab
colnames(tmp) <- paste0(colnames(anno_tab), "_to")
e_atr <- dplyr::left_join(e_atr, tmp, by = c("to" = "name_to"), suffix = c(".x", ""))
grep(".x", colnames(e_atr), value = TRUE) %>% gsub(".x", "", .) -> du
if (length(du) > 0) {
if (verbose) message(length(du), (" attributes will be overwrited:\n"), paste0(du, collapse = ","), "\n")
}
e_atr %>% dplyr::select(!dplyr::ends_with(".x")) -> e_atr
}
as.list(e_atr) -> igraph::edge.attributes(go)
return(go)
}
#' Save network file
#'
#' @param go metanet network
#' @param filename filename
#' @param format "data.frame","graphml"
#' @return No value
#' @family manipulate
#' @export
c_net_save <- function(go, filename = "net", format = "data.frame") {
if (format == "data.frame") {
get_v(go) %>% write.csv(., paste0(filename, "_nodes.csv"), row.names = FALSE)
get_e(go) %>%
dplyr::select(-1) %>%
write.csv(., paste0(filename, "_edges.csv"), row.names = FALSE)
} else if (format == "graphml") {
if ("id" %in% edge.attributes(go)) go <- igraph::delete_edge_attr(go, "id")
if (!grepl("\\.graphml$", filename)) filename <- paste0(filename, ".graphml")
igraph::write_graph(go, filename, format = "graphml")
} else {
if (!grepl(paste0("\\.", format), filename)) filename <- paste0(filename, ".", format)
igraph::write_graph(go, filename, format = format)
}
message(paste0(filename, " saved sucessfully!"))
}
#' Load network file
#'
#' @inheritParams c_net_save
#'
#' @return metanet
#' @export
#' @family manipulate
c_net_load <- function(filename, format = "data.frame") {
if (format == "data.frame") {
nodes <- read.csv(paste0(filename, "_nodes.csv"), stringsAsFactors = FALSE)
edges <- read.csv(paste0(filename, "_edges.csv"), stringsAsFactors = FALSE)
c_net_from_edgelist(edges, vertex_df = nodes) -> go
} else if (format == "cyjs") {
lib_ps("jsonify", library = FALSE)
if (!grepl("\\.cyjs$", filename)) filename <- paste0(filename, ".cyjs")
jsonify::from_json(filename) -> G
if (!is.data.frame(G$elements$nodes$data)) {
names <- lapply(G$elements$nodes$data, names)
comm_name <- Reduce(intersect, names)
lapply(G$elements$nodes$data, \(i)i[comm_name]) -> G$elements$nodes$data
G$elements$nodes$data <- list_to_dataframe(G$elements$nodes$data)
}
node <- cbind_new(G$elements$nodes$data, G$elements$nodes$position)
node$y <- -node$y
node <- node[, colnames(node) != "name"]
colnames(node)[1] <- "name"
edge <- G$elements$edges$data
edge <- edge[, !colnames(edge) %in% c("from", "to")]
colnames(edge)[1:3] <- c("id", "from", "to")
c_net_from_edgelist(edge, node) -> go
} else if (format == "graphml") {
if (!grepl("\\.graphml$", filename)) filename <- paste0(filename, ".graphml")
igraph::read_graph(filename, format = "graphml") -> go
go <- c_net_update(go, initialize = TRUE)
} else {
if (!grepl(paste0("\\.", format), filename)) filename <- paste0(filename, ".", format)
igraph::read_graph(filename, format = format) -> go
go <- c_net_update(go, initialize = TRUE)
}
go
}
#' Summaries two columns information
#' @param df data.frame
#' @param from first column name or index
#' @param to second column name or index
#' @param count (optional) weight column, if no, each equal to 1
#' @param direct consider direct? default: FALSE
#'
#' @return data.frame
#' @export
#' @examples
#' test <- data.frame(
#' a = sample(letters[1:4], 10, replace = TRUE),
#' b = sample(letters[1:4], 10, replace = TRUE)
#' )
#' summ_2col(test, direct = TRUE)
#' summ_2col(test, direct = FALSE)
#' if (requireNamespace("circlize")) {
#' summ_2col(test, direct = TRUE) %>% pcutils::my_circo()
#' }
summ_2col <- function(df, from = 1, to = 2, count = 3, direct = FALSE) {
if (ncol(df) < 2) stop("need at least two columns")
if (ncol(df) == 2) {
tmp <- cbind(df, count = 1)
} else {
tmp <- dplyr::select(df, !!from, !!to, !!count)
}
cols <- colnames(tmp)
colnames(tmp) <- c("from", "to", "count")
if (direct) {
tmp <- (dplyr::group_by(tmp, from, to) %>% dplyr::summarise(count = sum(count)))
colnames(tmp) <- cols
return(as.data.frame(tmp))
}
com <- \(group1, group2, levels){
factor(c(group1, group2), levels = levels) %>% sort()
}
group <- factor(c(tmp[, 1], tmp[, 2]))
tmp1 <- apply(tmp, 1, function(x) com(x[1], x[2], levels(group))) %>%
t() %>%
as.data.frame()
tmp1 <- cbind(tmp1, tmp$count)
colnames(tmp1) <- c("from", "to", "count")
tmp1 <- dplyr::group_by(tmp1, from, to) %>% dplyr::summarise(count = sum(count))
colnames(tmp1) <- cols
return(as.data.frame(tmp1))
}
#' Get skeleton network according to a group
#'
#' @param go network
#' @param Group vertex column name
#' @param count take which column count, default: NULL
#' @param top_N top_N
#'
#' @return skeleton network
#' @export
#' @family topological
#' @examples
#' get_group_skeleton(co_net) -> ske_net
#' skeleton_plot(ske_net)
get_group_skeleton <- function(go, Group = "v_class", count = NULL, top_N = 8) {
name <- v_group <- n <- NULL
stopifnot(is_igraph(go))
direct <- igraph::is_directed(go)
if (!Group %in% vertex_attr_names(go)) stop("no Group named ", Group, " !")
get_v(go) -> tmp_v
tmp_v %>% dplyr::select(name, !!Group) -> nodeGroup
colnames(nodeGroup) <- c("name", "Group")
nodeGroup$Group <- as.factor(nodeGroup$Group)
# summary edges counts in each e_type
suppressMessages(anno_edge(go, nodeGroup) %>% get_e() -> edge)
{
if (is.null(count)) {
edge$count <- 1
} else {
edge$count <- edge[, count]
}
}
bb <- data.frame()
for (i in unique(edge$e_type)) {
tmp <- edge[edge$e_type == i, c("Group_from", "Group_to", "count")]
tmp <- dplyr::mutate_if(tmp, is.factor, as.character)
# tmp=pcutils:::gettop(tmp,top_N)
bb <- rbind(bb, data.frame(summ_2col(tmp,
direct = direct
), e_type = i))
}
tmp_go <- igraph::graph_from_data_frame(bb, directed = direct)
nodeGroup <- cbind_new(nodeGroup, data.frame(v_group = tmp_v$v_group))
# nodeGroup=mutate_all(nodeGroup,as.character)
# nodeGroup=rbind(nodeGroup,c("others","others","others"))
dplyr::distinct(nodeGroup, Group, v_group) %>% tibble::column_to_rownames("Group") -> v_group_tab
V(tmp_go)$v_group <- v_group_tab[V(tmp_go)$name, "v_group"]
V(tmp_go)$v_class <- V(tmp_go)$name
V(tmp_go)$size <- stats::aggregate(tmp_v$size, by = list(tmp_v[, Group]), sum) %>%
tibble::column_to_rownames("Group.1") %>%
.[V(tmp_go)$name, "x"]
suppressWarnings({
V(tmp_go)$count <- tmp_v %>%
dplyr::group_by_(Group) %>%
dplyr::count() %>%
tibble::column_to_rownames(Group) %>%
.[V(tmp_go)$name, "n"]
})
tmp_go <- c_net_update(tmp_go, initialize = TRUE)
get_e(tmp_go) -> tmp_e
E(tmp_go)$width <- E(tmp_go)$label <- tmp_e$count
graph.attributes(tmp_go)$n_type <- "skeleton"
graph.attributes(tmp_go)$skeleton <- Group
tmp_go
}
#' Skeleton plot
#'
#' @param ske_net skeleton
#' @param split_e_type split by e_type? default: TRUE
#' @param ... additional parameters for \code{\link[igraph]{igraph.plotting}}
#'
#' @export
#' @rdname get_group_skeleton
skeleton_plot <- function(ske_net, split_e_type = TRUE, ...) {
e_type <- NULL
params <- list(...)
tmp_go <- ske_net
if (get_n(tmp_go)$n_type != "skeleton") stop("Not a skeleton network")
get_e(tmp_go) -> tmp_e
if (split_e_type) {
for (i in unique(tmp_e$e_type)) {
# main plot
tmp_go1 <- c_net_filter(tmp_go, e_type == i, mode = "e")
do.call(c_net_plot, pcutils::update_param(
list(go = tmp_go1, legend_number = TRUE, edge_width_range = c(1, 5)), params
))
}
} else {
tmp_go <- clean_multi_edge_metanet(tmp_go)
do.call(c_net_plot, pcutils::update_param(
list(go = tmp_go, legend_number = TRUE, edge_width_range = c(1, 5)), params
))
}
}
# 整理skeleton网络的边,使其尽量不重叠。
# 1.from-to都是自己时,添加edge.loop.angle
# 2.from-to一致时,添加edge.curved
# 3.from-to刚好相反时,添加edge.curved
#' Clean multi edge metanet to plot
#' @param go metanet object
#'
#' @return metanet object
#' @export
#'
#' @examples
#' g <- igraph::make_ring(2)
#' g <- igraph::add.edges(g, c(1, 1, 1, 1, 2, 1))
#' plot(g)
#' plot(clean_multi_edge_metanet(g))
clean_multi_edge_metanet <- function(go) {
tmp_e <- get_e(go)
tmp_e$loop.angle <- 0
# tmp_e$curved=0
summ_2col(tmp_e[, c("from", "to")], direct = FALSE) -> e_count
filter(e_count, count > 1) -> multi_e_count
for (i in seq_len(nrow(multi_e_count))) {
from <- multi_e_count$from[i]
to <- multi_e_count$to[i]
count <- multi_e_count$count[i]
if (from == to) {
tmp_e[tmp_e$from == from & tmp_e$to == to, "loop.angle"] <- seq(0, 2 * pi, length = count + 1)[-(count + 1)]
}
# else {
# tmp_e[tmp_e$from%in%c(from,to) & tmp_e$to%in%c(from,to),"curved"] <- 0.2 # seq(0,1,length=count)
# }
}
# summ_2col(tmp_e[,c("from","to")],direct = TRUE) -> e_count
# filter(e_count,count>1) -> multi_e_count
# for (i in seq_len(nrow(multi_e_count))) {
# from=multi_e_count$from[i]
# to=multi_e_count$to[i]
# count=multi_e_count$count[i]
# if(from!=to){
# tmp_e[tmp_e$from==from & tmp_e$to==to,"curved"] <- seq(0.2,1,length=count)
# }
# }
igraph::edge.attributes(go) <- as.list(tmp_e)
go
}
#' Link summary of the network
#'
#' @param go igraph or metanet
#' @param group summary which group of vertex attribution in names(vertex_attr(go))
#' @param e_type "positive", "negative", "all"
#' @param topN topN of group, default: 10
#' @param mode 1~2
#' @param colors colors
#' @param plot_param plot parameters
#'
#' @return plot
#' @export
#' @family topological
#' @examples
#' if (requireNamespace("circlize")) {
#' links_stat(co_net, topN = 10)
#' module_detect(co_net) -> co_net_modu
#' links_stat(co_net_modu, group = "module")
#' }
#' if (requireNamespace("corrplot")) {
#' links_stat(co_net, topN = 10, mode = 2)
#' }
links_stat <- function(go, group = "v_class", e_type = "all",
topN = 10, colors = NULL, mode = 1, plot_param = list()) {
color <- v_class <- shape <- left_leg_x <- from <- to <- n <- NULL
direct <- is_directed(go)
go <- c_net_set(go, vertex_class = group)
get_v(go) -> v_index
v_index %>% dplyr::select("name", "v_class") -> map
suppressMessages(anno_edge(go, map) %>% get_e() -> edge)
# statistics
if (e_type != "all") edge %>% dplyr::filter(e_type == !!e_type) -> edge
summ_2col(edge[, paste0("v_class", c("_from", "_to"))], direct = direct) -> bb
colnames(bb) <- c("from", "to", "count")
dplyr::group_by(bb, from) %>%
dplyr::summarise(n = sum(count)) %>%
dplyr::arrange(-n) %>%
dplyr::top_n(topN, n) %>%
dplyr::pull(from) -> nnn
# plot
bb2 <- mutate(bb,
from = ifelse(from %in% nnn, from, "Others"),
to = ifelse(to %in% nnn, to, "Others")
) %>% summ_2col(direct = direct)
if (mode == 1) {
do.call(pcutils::my_circo, pcutils::update_param(
list(
df = bb2,
reorder = FALSE,
pal = colors
), plot_param
))
}
if (mode == 2) {
tab <- pcutils::df2distance(bb2)
tab2 <- tab
tab2[tab2 > 0] <- 1
tab2[tab2 != 1] <- 0
# tab2 <- trans(tab, "pa") %>% as.matrix()
do.call(corrplot::corrplot, pcutils::update_param(
list(
corr = tab2,
type = "lower",
method = "color",
col = c("white", "white", "red"),
addgrid.col = "black",
cl.pos = "n",
tl.col = "black"
),
plot_param
))
}
}
# 每个分组可以构建一个网络,每个网络都可以用link_stat得到一些互作的数量(互作强度),可以再看这些数量和分组间某些指标的相关性。