|
a |
|
b/man/runGSVA.Rd |
|
|
1 |
% Generated by roxygen2: do not edit by hand |
|
|
2 |
% Please edit documentation in R/runGSVA.R |
|
|
3 |
\name{runGSVA} |
|
|
4 |
\alias{runGSVA} |
|
|
5 |
\title{Run gene set variation analysis} |
|
|
6 |
\usage{ |
|
|
7 |
runGSVA( |
|
|
8 |
moic.res = NULL, |
|
|
9 |
norm.expr = NULL, |
|
|
10 |
gset.gmt.path = NULL, |
|
|
11 |
gsva.method = "gsva", |
|
|
12 |
centerFlag = TRUE, |
|
|
13 |
scaleFlag = TRUE, |
|
|
14 |
halfwidth = 1, |
|
|
15 |
annCol = NULL, |
|
|
16 |
annColors = NULL, |
|
|
17 |
clust.col = c("#2EC4B6", "#E71D36", "#FF9F1C", "#BDD5EA", "#FFA5AB", "#011627", |
|
|
18 |
"#023E8A", "#9D4EDD"), |
|
|
19 |
distance = "euclidean", |
|
|
20 |
linkage = "ward.D", |
|
|
21 |
show_rownames = TRUE, |
|
|
22 |
show_colnames = FALSE, |
|
|
23 |
color = c("#366A9B", "#4E98DE", "#DDDDDD", "#FBCFA7", "#F79C4A"), |
|
|
24 |
fig.path = getwd(), |
|
|
25 |
fig.name = NULL, |
|
|
26 |
width = 8, |
|
|
27 |
height = 8, |
|
|
28 |
... |
|
|
29 |
) |
|
|
30 |
} |
|
|
31 |
\arguments{ |
|
|
32 |
\item{moic.res}{An object returned by `getMOIC()` with one specified algorithm or `get\%algorithm_name\%` or `getConsensusMOIC()` with a list of multiple algorithms.} |
|
|
33 |
|
|
|
34 |
\item{norm.expr}{A matrix of normalized expression data with rows for genes and columns for samples; FPKM or TPM without log2 transformation is recommended.} |
|
|
35 |
|
|
|
36 |
\item{gset.gmt.path}{A string value to indicate ABSOULUTE PATH/NAME of gene sets of interest stored as GMT format \url{https://software.broadinstitute.org/cancer/software/gsea/wiki/index.php/Data_formats#GMT:_Gene_Matrix_Transposed_file_format_.28.2A.gmt.29}.} |
|
|
37 |
|
|
|
38 |
\item{centerFlag}{A logical vector to indicate if enrichment scores should be centered; TRUE by default.} |
|
|
39 |
|
|
|
40 |
\item{scaleFlag}{A logical vector to indicate if enrichment scores should be scaled; TRUE by default.} |
|
|
41 |
|
|
|
42 |
\item{halfwidth}{A numeric value to assign marginal cutoff for truncating enrichment scores; 1 by default.} |
|
|
43 |
|
|
|
44 |
\item{annCol}{A data.frame storing annotation information for samples.} |
|
|
45 |
|
|
|
46 |
\item{annColors}{A list of string vectors for colors matched with annCol.} |
|
|
47 |
|
|
|
48 |
\item{clust.col}{A string vector storing colors for annotating each subtype at the top of heatmap.} |
|
|
49 |
|
|
|
50 |
\item{distance}{A string value of distance measurement for hierarchical clustering; 'euclidean' by default.} |
|
|
51 |
|
|
|
52 |
\item{linkage}{A string value of clustering method for hierarchical clustering; 'ward.D' by default.} |
|
|
53 |
|
|
|
54 |
\item{show_rownames}{A logic value to indicate if showing rownames (feature names) in heatmap; TRUE by default.} |
|
|
55 |
|
|
|
56 |
\item{show_colnames}{A logic value to indicate if showing colnames (sample ID) in heatmap; FALSE by default.} |
|
|
57 |
|
|
|
58 |
\item{color}{A string vector storing colors for heatmap.} |
|
|
59 |
|
|
|
60 |
\item{fig.path}{A string value to indicate the output path for storing the enrichment heatmap.} |
|
|
61 |
|
|
|
62 |
\item{fig.name}{A string value to indicate the name of the enrichment heatmap.} |
|
|
63 |
|
|
|
64 |
\item{width}{A numeric value to indicate the width of output figure.} |
|
|
65 |
|
|
|
66 |
\item{height}{A numeric value to indicate the height of output figure.} |
|
|
67 |
|
|
|
68 |
\item{...}{Additional parameters pass to \link[ComplexHeatmap]{pheatmap}.} |
|
|
69 |
} |
|
|
70 |
\value{ |
|
|
71 |
A figure of enrichment heatmap (.pdf) and a list with the following components: |
|
|
72 |
|
|
|
73 |
\code{gset.list} a list storing gene sets information converted from GMT format by \link[clusterProfiler]{read.gmt}. |
|
|
74 |
|
|
|
75 |
\code{raw.es} a data.frame storing raw enrichment score based on given gene sets of interest by using specified \code{gsva.method}. |
|
|
76 |
|
|
|
77 |
\code{scaled.es} a data.frame storing z-scored enrichment score based on given gene sets of interest by using specified \code{gsva.method}. |
|
|
78 |
} |
|
|
79 |
\description{ |
|
|
80 |
Use gene set variation analysis to calculate enrichment score of each sample in each subtype based on given gene set list of interest. |
|
|
81 |
} |
|
|
82 |
\examples{ |
|
|
83 |
# There is no example and please refer to vignette. |
|
|
84 |
} |
|
|
85 |
\references{ |
|
|
86 |
Barbie, D.A. et al. (2009). Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature, 462(5):108-112. |
|
|
87 |
|
|
|
88 |
Hänzelmann, S., Castelo, R. and Guinney, J. (2013). GSVA: Gene set variation analysis for microarray and RNA-Seq data. BMC Bioinformatics, 14(1):7. |
|
|
89 |
|
|
|
90 |
Lee, E. et al. (2008). Inferring pathway activity toward precise disease classification. PLoS Comp Biol, 4(11):e1000217. |
|
|
91 |
|
|
|
92 |
Tomfohr, J. et al. (2005). Pathway level analysis of gene expression using singular value decomposition. BMC Bioinformatics, 6(1):1-11. |
|
|
93 |
|
|
|
94 |
Yu G, Wang L, Han Y, He Q (2012). clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS, 16(5):284-287. |
|
|
95 |
} |