[494cbf]: / man / runGSVA.Rd

Download this file

96 lines (70 with data), 4.2 kB

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/runGSVA.R
\name{runGSVA}
\alias{runGSVA}
\title{Run gene set variation analysis}
\usage{
runGSVA(
moic.res = NULL,
norm.expr = NULL,
gset.gmt.path = NULL,
gsva.method = "gsva",
centerFlag = TRUE,
scaleFlag = TRUE,
halfwidth = 1,
annCol = NULL,
annColors = NULL,
clust.col = c("#2EC4B6", "#E71D36", "#FF9F1C", "#BDD5EA", "#FFA5AB", "#011627",
"#023E8A", "#9D4EDD"),
distance = "euclidean",
linkage = "ward.D",
show_rownames = TRUE,
show_colnames = FALSE,
color = c("#366A9B", "#4E98DE", "#DDDDDD", "#FBCFA7", "#F79C4A"),
fig.path = getwd(),
fig.name = NULL,
width = 8,
height = 8,
...
)
}
\arguments{
\item{moic.res}{An object returned by `getMOIC()` with one specified algorithm or `get\%algorithm_name\%` or `getConsensusMOIC()` with a list of multiple algorithms.}
\item{norm.expr}{A matrix of normalized expression data with rows for genes and columns for samples; FPKM or TPM without log2 transformation is recommended.}
\item{gset.gmt.path}{A string value to indicate ABSOULUTE PATH/NAME of gene sets of interest stored as GMT format \url{https://software.broadinstitute.org/cancer/software/gsea/wiki/index.php/Data_formats#GMT:_Gene_Matrix_Transposed_file_format_.28.2A.gmt.29}.}
\item{centerFlag}{A logical vector to indicate if enrichment scores should be centered; TRUE by default.}
\item{scaleFlag}{A logical vector to indicate if enrichment scores should be scaled; TRUE by default.}
\item{halfwidth}{A numeric value to assign marginal cutoff for truncating enrichment scores; 1 by default.}
\item{annCol}{A data.frame storing annotation information for samples.}
\item{annColors}{A list of string vectors for colors matched with annCol.}
\item{clust.col}{A string vector storing colors for annotating each subtype at the top of heatmap.}
\item{distance}{A string value of distance measurement for hierarchical clustering; 'euclidean' by default.}
\item{linkage}{A string value of clustering method for hierarchical clustering; 'ward.D' by default.}
\item{show_rownames}{A logic value to indicate if showing rownames (feature names) in heatmap; TRUE by default.}
\item{show_colnames}{A logic value to indicate if showing colnames (sample ID) in heatmap; FALSE by default.}
\item{color}{A string vector storing colors for heatmap.}
\item{fig.path}{A string value to indicate the output path for storing the enrichment heatmap.}
\item{fig.name}{A string value to indicate the name of the enrichment heatmap.}
\item{width}{A numeric value to indicate the width of output figure.}
\item{height}{A numeric value to indicate the height of output figure.}
\item{...}{Additional parameters pass to \link[ComplexHeatmap]{pheatmap}.}
}
\value{
A figure of enrichment heatmap (.pdf) and a list with the following components:
\code{gset.list} a list storing gene sets information converted from GMT format by \link[clusterProfiler]{read.gmt}.
\code{raw.es} a data.frame storing raw enrichment score based on given gene sets of interest by using specified \code{gsva.method}.
\code{scaled.es} a data.frame storing z-scored enrichment score based on given gene sets of interest by using specified \code{gsva.method}.
}
\description{
Use gene set variation analysis to calculate enrichment score of each sample in each subtype based on given gene set list of interest.
}
\examples{
# There is no example and please refer to vignette.
}
\references{
Barbie, D.A. et al. (2009). Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature, 462(5):108-112.
Hänzelmann, S., Castelo, R. and Guinney, J. (2013). GSVA: Gene set variation analysis for microarray and RNA-Seq data. BMC Bioinformatics, 14(1):7.
Lee, E. et al. (2008). Inferring pathway activity toward precise disease classification. PLoS Comp Biol, 4(11):e1000217.
Tomfohr, J. et al. (2005). Pathway level analysis of gene expression using singular value decomposition. BMC Bioinformatics, 6(1):1-11.
Yu G, Wang L, Han Y, He Q (2012). clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS, 16(5):284-287.
}