Diff of /man/getiClusterBayes.Rd [000000] .. [494cbf]

Switch to unified view

a b/man/getiClusterBayes.Rd
1
% Generated by roxygen2: do not edit by hand
2
% Please edit documentation in R/getiClusterBayes.R
3
\name{getiClusterBayes}
4
\alias{getiClusterBayes}
5
\title{Get subtypes from iClusterBayes}
6
\usage{
7
getiClusterBayes(
8
  data = NULL,
9
  N.clust = NULL,
10
  type = rep("gaussian", length(data)),
11
  n.burnin = 18000,
12
  n.draw = 12000,
13
  prior.gamma = rep(0.5, length(data)),
14
  sdev = 0.05,
15
  thin = 3
16
)
17
}
18
\arguments{
19
\item{data}{List of matrices with maximum of 6 subdatasets.}
20
21
\item{N.clust}{Number of clusters.}
22
23
\item{type}{Data type corresponding to the list of matrics, which can be gaussian, binomial or possion.}
24
25
\item{n.burnin}{An integer value to indicate the number of MCMC burnin.}
26
27
\item{n.draw}{An integer value to indicate the number of MCMC draw.}
28
29
\item{prior.gamma}{A numerical vector to indicate the prior probability for the indicator variable gamma of each subdataset.}
30
31
\item{sdev}{A numerical value to indicate the standard deviation of random walk proposal for the latent variable.}
32
33
\item{thin}{A numerical value to thin the MCMC chain in order to reduce autocorrelation.}
34
}
35
\value{
36
A list with the following components:
37
38
        \code{fit}       an object returned by \link[iClusterPlus]{iClusterBayes}.
39
40
        \code{clust.res} a data.frame storing sample ID and corresponding clusters.
41
42
        \code{feat.res}  the results of features selection process.
43
44
        \code{mo.method} a string value indicating the method used for multi-omics integrative clustering.
45
}
46
\description{
47
This function wraps the iClusterBayes (Integrative clustering by Bayesian latent variable model) algorithm and provides standard output for `getMoHeatmap()` and `getConsensusMOIC()`.
48
}
49
\examples{
50
# There is no example and please refer to vignette.
51
}
52
\references{
53
Mo Q, Shen R, Guo C, Vannucci M, Chan KS, Hilsenbeck SG (2018). A fully Bayesian latent variable model for integrative clustering analysis of multi-type omics data. Biostatistics, 19(1):71-86.
54
}