|
a |
|
b/man/getiClusterBayes.Rd |
|
|
1 |
% Generated by roxygen2: do not edit by hand |
|
|
2 |
% Please edit documentation in R/getiClusterBayes.R |
|
|
3 |
\name{getiClusterBayes} |
|
|
4 |
\alias{getiClusterBayes} |
|
|
5 |
\title{Get subtypes from iClusterBayes} |
|
|
6 |
\usage{ |
|
|
7 |
getiClusterBayes( |
|
|
8 |
data = NULL, |
|
|
9 |
N.clust = NULL, |
|
|
10 |
type = rep("gaussian", length(data)), |
|
|
11 |
n.burnin = 18000, |
|
|
12 |
n.draw = 12000, |
|
|
13 |
prior.gamma = rep(0.5, length(data)), |
|
|
14 |
sdev = 0.05, |
|
|
15 |
thin = 3 |
|
|
16 |
) |
|
|
17 |
} |
|
|
18 |
\arguments{ |
|
|
19 |
\item{data}{List of matrices with maximum of 6 subdatasets.} |
|
|
20 |
|
|
|
21 |
\item{N.clust}{Number of clusters.} |
|
|
22 |
|
|
|
23 |
\item{type}{Data type corresponding to the list of matrics, which can be gaussian, binomial or possion.} |
|
|
24 |
|
|
|
25 |
\item{n.burnin}{An integer value to indicate the number of MCMC burnin.} |
|
|
26 |
|
|
|
27 |
\item{n.draw}{An integer value to indicate the number of MCMC draw.} |
|
|
28 |
|
|
|
29 |
\item{prior.gamma}{A numerical vector to indicate the prior probability for the indicator variable gamma of each subdataset.} |
|
|
30 |
|
|
|
31 |
\item{sdev}{A numerical value to indicate the standard deviation of random walk proposal for the latent variable.} |
|
|
32 |
|
|
|
33 |
\item{thin}{A numerical value to thin the MCMC chain in order to reduce autocorrelation.} |
|
|
34 |
} |
|
|
35 |
\value{ |
|
|
36 |
A list with the following components: |
|
|
37 |
|
|
|
38 |
\code{fit} an object returned by \link[iClusterPlus]{iClusterBayes}. |
|
|
39 |
|
|
|
40 |
\code{clust.res} a data.frame storing sample ID and corresponding clusters. |
|
|
41 |
|
|
|
42 |
\code{feat.res} the results of features selection process. |
|
|
43 |
|
|
|
44 |
\code{mo.method} a string value indicating the method used for multi-omics integrative clustering. |
|
|
45 |
} |
|
|
46 |
\description{ |
|
|
47 |
This function wraps the iClusterBayes (Integrative clustering by Bayesian latent variable model) algorithm and provides standard output for `getMoHeatmap()` and `getConsensusMOIC()`. |
|
|
48 |
} |
|
|
49 |
\examples{ |
|
|
50 |
# There is no example and please refer to vignette. |
|
|
51 |
} |
|
|
52 |
\references{ |
|
|
53 |
Mo Q, Shen R, Guo C, Vannucci M, Chan KS, Hilsenbeck SG (2018). A fully Bayesian latent variable model for integrative clustering analysis of multi-type omics data. Biostatistics, 19(1):71-86. |
|
|
54 |
} |