[494cbf]: / man / getMoHeatmap.Rd

Download this file

87 lines (66 with data), 3.9 kB

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/getMoHeatmap.R
\name{getMoHeatmap}
\alias{getMoHeatmap}
\title{Get multi-omics comprehensive heatmap}
\usage{
getMoHeatmap(
data = NULL,
is.binary = c(FALSE, FALSE, FALSE, FALSE, FALSE, FALSE),
row.title = c("Data1", "Data2", "Data3", "Data4", "Data5", "Data6"),
legend.name = c("Data1", "Data2", "Data3", "Data4", "Data5", "Data6"),
clust.res = NULL,
clust.dend = NULL,
show.col.dend = TRUE,
show.colnames = FALSE,
show.row.dend = c(TRUE, TRUE, TRUE, TRUE, TRUE, TRUE),
show.rownames = c(FALSE, FALSE, FALSE, FALSE, FALSE, FALSE),
clust.dist.row = c("pearson", "pearson", "pearson", "pearson", "pearson", "pearson"),
clust.method.row = c("ward.D", "ward.D", "ward.D", "ward.D", "ward.D", "ward.D"),
clust.col = c("#2EC4B6", "#E71D36", "#FF9F1C", "#BDD5EA", "#FFA5AB", "#011627",
"#023E8A", "#9D4EDD"),
color = rep(list(c("#00FF00", "#000000", "#FF0000")), length(data)),
annCol = NULL,
annColors = NULL,
annRow = NULL,
width = 6,
height = 4,
fig.path = getwd(),
fig.name = "moheatmap"
)
}
\arguments{
\item{data}{A list of data frame or matrix storing multiple omics data with rows for features and columns for samples.}
\item{is.binary}{A logicial vector to indicate if the subdata is binary matrix of 0 and 1 such as mutation.}
\item{row.title}{A string vector to assign titles for each subdata.}
\item{legend.name}{A string vector to assign legend title for each subdata.}
\item{clust.res}{A clust.res object returned by `getMOIC()` with one specified algorithm or `get\%algorithm_name\%` or `getConsensusMOIC()` with a list of multiple algorithms.}
\item{clust.dend}{A dendrogram object returned returned by `getMOIC()` with one specified algorithm or `get\%algorithm_name\%` or `getConsensusMOIC()` with a list of multiple algorithms.}
\item{show.col.dend}{A logical vector to indicate if showing the dendrogram for column at the top of heatmap.}
\item{show.colnames}{A logical vector to indicate if showing the names for column at the bottom of heatmap.}
\item{show.row.dend}{A logical vector to indicate if showing the dendrogram for row of each subdata.}
\item{show.rownames}{A logical vector to indicate if showing the names for row of each subdata.}
\item{clust.dist.row}{A string vector to assign distance method for clustering each subdata at feature dimension.}
\item{clust.method.row}{A string vector to assign clustering method for clustering each subdata at feature dimension.}
\item{clust.col}{A string vector storing colors for annotating each subtype at the top of heatmap.}
\item{color}{A list of string vectors storing colors for each subheatmap of subdata.}
\item{annCol}{A data.frame storing annotation information for samples with exact the same sample order with data parameter.}
\item{annColors}{A list of string vectors for colors matched with annCol.}
\item{annRow}{A list of string vectors to indicate which features belong to which subdata should be annotated specifically in subheatmap.}
\item{width}{An integer value to indicate the width for each subheatmap with unit of cm.}
\item{height}{An integer value to indicate the height for each subheatmap with unit of cm.}
\item{fig.path}{A string value to indicate the output path for storing the comprehensive heatmap.}
\item{fig.name}{A string value to indicate the name of the comprehensive heatmap.}
}
\value{
A pdf of multi-omics comprehensive heatmap
}
\description{
This function vertically concatenates multiple heatmap derived from each omics data. `getMoHeatmap` supports customized column annotation and is able to mark the selected features if indicated.
}
\examples{
# There is no example and please refer to vignette.
}
\references{
Gu Z, Eils R, Schlesner M (2016). Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics.
}