|
a |
|
b/man/getMoCluster.Rd |
|
|
1 |
% Generated by roxygen2: do not edit by hand |
|
|
2 |
% Please edit documentation in R/getMoCluster.R |
|
|
3 |
\name{getMoCluster} |
|
|
4 |
\alias{getMoCluster} |
|
|
5 |
\title{Get subtypes from MoCluster} |
|
|
6 |
\usage{ |
|
|
7 |
getMoCluster( |
|
|
8 |
data = NULL, |
|
|
9 |
N.clust = NULL, |
|
|
10 |
type = rep("gaussian", length(data)), |
|
|
11 |
ncomp = NULL, |
|
|
12 |
method = "CPCA", |
|
|
13 |
option = "lambda1", |
|
|
14 |
k = 10, |
|
|
15 |
center = TRUE, |
|
|
16 |
scale = TRUE, |
|
|
17 |
clusterAlg = "ward.D" |
|
|
18 |
) |
|
|
19 |
} |
|
|
20 |
\arguments{ |
|
|
21 |
\item{data}{List of matrices.} |
|
|
22 |
|
|
|
23 |
\item{N.clust}{Number of clusters.} |
|
|
24 |
|
|
|
25 |
\item{type}{Data type corresponding to the list of matrics, which can be gaussian, binomial or possion.} |
|
|
26 |
|
|
|
27 |
\item{ncomp}{An integer value to indicate the number of components to calculate. To calculate more components requires longer computational time.} |
|
|
28 |
|
|
|
29 |
\item{method}{A string value can be one of CPCA, GCCA and MCIA; CPCA by default.} |
|
|
30 |
|
|
|
31 |
\item{option}{A string value could be one of c('lambda1', 'inertia', 'uniform') to indicate how the different matrices should be normalized.} |
|
|
32 |
|
|
|
33 |
\item{k}{A numeric value to indicate the absolute number (if k >= 1) or the proportion (if 0 < k < 1) of non-zero coefficients for the variable loading vectors. It could be a single value or a vector has the same length as x so the sparsity of individual matrix could be different.} |
|
|
34 |
|
|
|
35 |
\item{center}{A logical value to indicate if the variables should be centered. TRUE by default.} |
|
|
36 |
|
|
|
37 |
\item{scale}{A logical value to indicate if the variables should be scaled. TRUE by default.} |
|
|
38 |
|
|
|
39 |
\item{clusterAlg}{A string value to indicate the cluster algorithm for distance.} |
|
|
40 |
} |
|
|
41 |
\value{ |
|
|
42 |
A list with the following components: |
|
|
43 |
|
|
|
44 |
\code{fit} an object returned by \link[mogsa]{mbpca}. |
|
|
45 |
|
|
|
46 |
\code{clust.res} a data.frame storing sample ID and corresponding clusters. |
|
|
47 |
|
|
|
48 |
\code{feat.res} the results of features selection process. |
|
|
49 |
|
|
|
50 |
\code{clust.dend} a dendrogram of sample clustering. |
|
|
51 |
|
|
|
52 |
\code{mo.method} a string value indicating the method used for multi-omics integrative clustering. |
|
|
53 |
} |
|
|
54 |
\description{ |
|
|
55 |
This function wraps the MoCluster (Multiple omics data integrative clustering) algorithm and provides standard output for `getMoHeatmap()` and `getConsensusMOIC()`. |
|
|
56 |
} |
|
|
57 |
\examples{ |
|
|
58 |
# There is no example and please refer to vignette. |
|
|
59 |
} |
|
|
60 |
\references{ |
|
|
61 |
Meng C, Helm D, Frejno M, Kuster B (2016). moCluster: Identifying Joint Patterns Across Multiple Omics Data Sets. J Proteome Res, 15(3):755-765. |
|
|
62 |
} |