Diff of /man/getMoCluster.Rd [000000] .. [494cbf]

Switch to unified view

a b/man/getMoCluster.Rd
1
% Generated by roxygen2: do not edit by hand
2
% Please edit documentation in R/getMoCluster.R
3
\name{getMoCluster}
4
\alias{getMoCluster}
5
\title{Get subtypes from MoCluster}
6
\usage{
7
getMoCluster(
8
  data = NULL,
9
  N.clust = NULL,
10
  type = rep("gaussian", length(data)),
11
  ncomp = NULL,
12
  method = "CPCA",
13
  option = "lambda1",
14
  k = 10,
15
  center = TRUE,
16
  scale = TRUE,
17
  clusterAlg = "ward.D"
18
)
19
}
20
\arguments{
21
\item{data}{List of matrices.}
22
23
\item{N.clust}{Number of clusters.}
24
25
\item{type}{Data type corresponding to the list of matrics, which can be gaussian, binomial or possion.}
26
27
\item{ncomp}{An integer value to indicate the number of components to calculate. To calculate more components requires longer computational time.}
28
29
\item{method}{A string value can be one of CPCA, GCCA and MCIA; CPCA by default.}
30
31
\item{option}{A string value could be one of c('lambda1', 'inertia', 'uniform') to indicate how the different matrices should be normalized.}
32
33
\item{k}{A numeric value to indicate the absolute number (if k >= 1) or the proportion (if 0 < k < 1) of non-zero coefficients for the variable loading vectors. It could be a single value or a vector has the same length as x so the sparsity of individual matrix could be different.}
34
35
\item{center}{A logical value to indicate if the variables should be centered. TRUE by default.}
36
37
\item{scale}{A logical value to indicate if the variables should be scaled. TRUE by default.}
38
39
\item{clusterAlg}{A string value to indicate the cluster algorithm for distance.}
40
}
41
\value{
42
A list with the following components:
43
44
        \code{fit}        an object returned by \link[mogsa]{mbpca}.
45
46
        \code{clust.res}  a data.frame storing sample ID and corresponding clusters.
47
48
        \code{feat.res}   the results of features selection process.
49
50
        \code{clust.dend} a dendrogram of sample clustering.
51
52
        \code{mo.method}  a string value indicating the method used for multi-omics integrative clustering.
53
}
54
\description{
55
This function wraps the MoCluster (Multiple omics data integrative clustering) algorithm and provides standard output for `getMoHeatmap()` and `getConsensusMOIC()`.
56
}
57
\examples{
58
# There is no example and please refer to vignette.
59
}
60
\references{
61
Meng C, Helm D, Frejno M, Kuster B (2016). moCluster: Identifying Joint Patterns Across Multiple Omics Data Sets. J Proteome Res, 15(3):755-765.
62
}