--- a +++ b/man/getMoCluster.Rd @@ -0,0 +1,62 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/getMoCluster.R +\name{getMoCluster} +\alias{getMoCluster} +\title{Get subtypes from MoCluster} +\usage{ +getMoCluster( + data = NULL, + N.clust = NULL, + type = rep("gaussian", length(data)), + ncomp = NULL, + method = "CPCA", + option = "lambda1", + k = 10, + center = TRUE, + scale = TRUE, + clusterAlg = "ward.D" +) +} +\arguments{ +\item{data}{List of matrices.} + +\item{N.clust}{Number of clusters.} + +\item{type}{Data type corresponding to the list of matrics, which can be gaussian, binomial or possion.} + +\item{ncomp}{An integer value to indicate the number of components to calculate. To calculate more components requires longer computational time.} + +\item{method}{A string value can be one of CPCA, GCCA and MCIA; CPCA by default.} + +\item{option}{A string value could be one of c('lambda1', 'inertia', 'uniform') to indicate how the different matrices should be normalized.} + +\item{k}{A numeric value to indicate the absolute number (if k >= 1) or the proportion (if 0 < k < 1) of non-zero coefficients for the variable loading vectors. It could be a single value or a vector has the same length as x so the sparsity of individual matrix could be different.} + +\item{center}{A logical value to indicate if the variables should be centered. TRUE by default.} + +\item{scale}{A logical value to indicate if the variables should be scaled. TRUE by default.} + +\item{clusterAlg}{A string value to indicate the cluster algorithm for distance.} +} +\value{ +A list with the following components: + + \code{fit} an object returned by \link[mogsa]{mbpca}. + + \code{clust.res} a data.frame storing sample ID and corresponding clusters. + + \code{feat.res} the results of features selection process. + + \code{clust.dend} a dendrogram of sample clustering. + + \code{mo.method} a string value indicating the method used for multi-omics integrative clustering. +} +\description{ +This function wraps the MoCluster (Multiple omics data integrative clustering) algorithm and provides standard output for `getMoHeatmap()` and `getConsensusMOIC()`. +} +\examples{ +# There is no example and please refer to vignette. +} +\references{ +Meng C, Helm D, Frejno M, Kuster B (2016). moCluster: Identifying Joint Patterns Across Multiple Omics Data Sets. J Proteome Res, 15(3):755-765. +}