|
a |
|
b/man/getMOIC.Rd |
|
|
1 |
% Generated by roxygen2: do not edit by hand |
|
|
2 |
% Please edit documentation in R/getMOIC.R |
|
|
3 |
\name{getMOIC} |
|
|
4 |
\alias{getMOIC} |
|
|
5 |
\title{Get subtypes from multi-omics integrative clustering} |
|
|
6 |
\usage{ |
|
|
7 |
getMOIC( |
|
|
8 |
data = NULL, |
|
|
9 |
methodslist = list("SNF", "CIMLR", "PINSPlus", "NEMO", "COCA", "MoCluster", |
|
|
10 |
"LRAcluster", "ConsensusClustering", "IntNMF", "iClusterBayes"), |
|
|
11 |
N.clust = NULL, |
|
|
12 |
type = rep("gaussian", length(data)), |
|
|
13 |
... |
|
|
14 |
) |
|
|
15 |
} |
|
|
16 |
\arguments{ |
|
|
17 |
\item{data}{List of matrices (Maximum number of matrices is 6).} |
|
|
18 |
|
|
|
19 |
\item{methodslist}{A string list specifying one or multiple methods to run (See Details).} |
|
|
20 |
|
|
|
21 |
\item{N.clust}{Number of clusters.} |
|
|
22 |
|
|
|
23 |
\item{type}{Data type corresponding to the list of matrics, which can be gaussian, binomial or possion.} |
|
|
24 |
|
|
|
25 |
\item{...}{Additionnal parameters for each method (only works when only one method chosen)} |
|
|
26 |
} |
|
|
27 |
\value{ |
|
|
28 |
A list of results returned by each specified algorithms. |
|
|
29 |
} |
|
|
30 |
\description{ |
|
|
31 |
Using `getMOIC()`, users can choose one out of the ten algorithms embedded in `MOVICS`. Users can implement multi-omics clustering in a simplest way of which the only requirement is to specify and at least specify a list of matrices (argument of `data`), a number of cluster (argument of `N.clust`), and clustering method (argument of `methodslist`) in `getMOIC()`. It is possible to pass various arguments that are specific to each method. Of course, users can also directly call different algorithms by using functions start with `get` and end with the name of the algorithm (e.g., `getSNF`; please refer to `?get%algorithm_name%` for more details about the editable arguments) |
|
|
32 |
} |
|
|
33 |
\details{ |
|
|
34 |
Method for integrative clustering will be chosed according to the value of argument 'methodslist': |
|
|
35 |
|
|
|
36 |
If \code{methodslist == "IntNMF"}, Integrative clustering methods using Non-Negative Matrix Factorization |
|
|
37 |
|
|
|
38 |
If \code{methodslist == "SNF"}, Similarity network fusion. |
|
|
39 |
|
|
|
40 |
If \code{methodslist == "LRAcluster"}, Integrated cancer omics data analysis by low rank approximation. |
|
|
41 |
|
|
|
42 |
If \code{methodslist == "PINSPlus"}, Perturbation Clustering for data integration and disease subtyping |
|
|
43 |
|
|
|
44 |
If \code{methodslist == "ConsensusClustering"}, Consensus clustering |
|
|
45 |
|
|
|
46 |
If \code{methodslist == "NEMO"}, Neighborhood based multi-omics clustering |
|
|
47 |
|
|
|
48 |
If \code{methodslist == "COCA"}, Cluster Of Clusters Analysis |
|
|
49 |
|
|
|
50 |
If \code{methodslist == "CIMLR"}, Cancer Integration via Multikernel Learning (Support Feature Selection) |
|
|
51 |
|
|
|
52 |
If \code{methodslist == "MoCluster"}, Identifying joint patterns across multiple omics data sets (Support Feature Selection) |
|
|
53 |
|
|
|
54 |
If \code{methodslist == "iClusterBayes"}, Integrative clustering of multiple genomic data by fitting a Bayesian latent variable model (Support Feature Selection) |
|
|
55 |
} |
|
|
56 |
\examples{ |
|
|
57 |
# There is no example and please refer to vignette. |
|
|
58 |
} |
|
|
59 |
\references{ |
|
|
60 |
Pierre-Jean M, Deleuze J F, Le Floch E, et al. Clustering and variable selection evaluation of 13 unsupervised methods for multi-omics data integration[J]. Briefings in Bioinformatics, 2019. |
|
|
61 |
|
|
|
62 |
intNMF: |
|
|
63 |
Chalise P, Fridley BL. Integrative clustering of multi-level omic data based on non-negative matrix factorization algorithm. PLoS One. 2017;12(5):e0176278. |
|
|
64 |
|
|
|
65 |
iClusterBayes: |
|
|
66 |
Mo Q, Shen R, Guo C, Vannucci M, Chan KS, Hilsenbeck SG. A fully Bayesian latent variable model for integrative clustering analysis of multi-type omics data. Biostatistics. 2018;19(1):71-86. |
|
|
67 |
|
|
|
68 |
SNF: |
|
|
69 |
Wang B, Mezlini AM, Demir F, et al. Similarity network fusion for aggregating data types on a genomic scale. Nat Methods. 2014;11(3):333-337. |
|
|
70 |
|
|
|
71 |
Mocluster: |
|
|
72 |
Meng C, Helm D, Frejno M, Kuster B. moCluster: Identifying Joint Patterns Across Multiple Omics Data Sets. J Proteome Res. 2016;15(3):755-765. |
|
|
73 |
|
|
|
74 |
LRAcluster: |
|
|
75 |
Wu D, Wang D, Zhang MQ, Gu J. Fast dimension reduction and integrative clustering of multi-omics data using low-rank approximation: application to cancer molecular classification. BMC Genomics. 2015;16:1022. |
|
|
76 |
|
|
|
77 |
CIMLR: |
|
|
78 |
Ramazzotti D, Lal A, Wang B, Batzoglou S, Sidow A. Multi-omic tumor data reveal diversity of molecular mechanisms that correlate with survival. Nat Commun. 2018;9(1):4453. |
|
|
79 |
|
|
|
80 |
PINSPlus: |
|
|
81 |
Nguyen H, Shrestha S, Draghici S, Nguyen T. PINSPlus: a tool for tumor subtype discovery in integrated genomic data. Bioinformatics. 2019;35(16):2843-2846. |
|
|
82 |
|
|
|
83 |
ConsensusClustering: |
|
|
84 |
Monti S, Tamayo P, Mesirov J, et al. Consensus Clustering: A Resampling-Based Method for Class Discovery and Visualization of Gene Expression Microarray Data. Machine Learning. 2003;52:91-118. |
|
|
85 |
|
|
|
86 |
NEMO: |
|
|
87 |
Rappoport N, Shamir R. NEMO: cancer subtyping by integration of partial multi-omic data. Bioinformatics. 2019;35(18):3348-3356. |
|
|
88 |
|
|
|
89 |
COCA: |
|
|
90 |
Hoadley KA, Yau C, Wolf DM, et al. Multiplatform analysis of 12 cancer types reveals molecular classification within and across tissues of origin. Cell. 2014;158(4):929-944. |
|
|
91 |
} |