Diff of /man/getMOIC.Rd [000000] .. [494cbf]

Switch to unified view

a b/man/getMOIC.Rd
1
% Generated by roxygen2: do not edit by hand
2
% Please edit documentation in R/getMOIC.R
3
\name{getMOIC}
4
\alias{getMOIC}
5
\title{Get subtypes from multi-omics integrative clustering}
6
\usage{
7
getMOIC(
8
  data = NULL,
9
  methodslist = list("SNF", "CIMLR", "PINSPlus", "NEMO", "COCA", "MoCluster",
10
    "LRAcluster", "ConsensusClustering", "IntNMF", "iClusterBayes"),
11
  N.clust = NULL,
12
  type = rep("gaussian", length(data)),
13
  ...
14
)
15
}
16
\arguments{
17
\item{data}{List of matrices (Maximum number of matrices is 6).}
18
19
\item{methodslist}{A string list specifying one or multiple methods to run (See Details).}
20
21
\item{N.clust}{Number of clusters.}
22
23
\item{type}{Data type corresponding to the list of matrics, which can be gaussian, binomial or possion.}
24
25
\item{...}{Additionnal parameters for each method (only works when only one method chosen)}
26
}
27
\value{
28
A list of results returned by each specified algorithms.
29
}
30
\description{
31
Using `getMOIC()`, users can choose one out of the ten algorithms embedded in `MOVICS`. Users can implement multi-omics clustering in a simplest way of which the only requirement is to specify and at least specify a list of matrices (argument of `data`), a number of cluster (argument of `N.clust`), and clustering method (argument of `methodslist`) in `getMOIC()`. It is possible to pass various arguments that are specific to each method. Of course, users can also directly call different algorithms by using functions start with `get` and end with the name of the algorithm (e.g., `getSNF`; please refer to `?get%algorithm_name%` for more details about the editable arguments)
32
}
33
\details{
34
Method for integrative clustering will be chosed according to the value of argument 'methodslist':
35
36
If \code{methodslist == "IntNMF"}, Integrative clustering methods using Non-Negative Matrix Factorization
37
38
If \code{methodslist == "SNF"}, Similarity network fusion.
39
40
If \code{methodslist == "LRAcluster"}, Integrated cancer omics data analysis by low rank approximation.
41
42
If \code{methodslist == "PINSPlus"}, Perturbation Clustering for data integration and disease subtyping
43
44
If \code{methodslist == "ConsensusClustering"}, Consensus clustering
45
46
If \code{methodslist == "NEMO"}, Neighborhood based multi-omics clustering
47
48
If \code{methodslist == "COCA"}, Cluster Of Clusters Analysis
49
50
If \code{methodslist == "CIMLR"}, Cancer Integration via Multikernel Learning (Support Feature Selection)
51
52
If \code{methodslist == "MoCluster"}, Identifying joint patterns across multiple omics data sets (Support Feature Selection)
53
54
If \code{methodslist == "iClusterBayes"}, Integrative clustering of multiple genomic data by fitting a Bayesian latent variable model (Support Feature Selection)
55
}
56
\examples{
57
# There is no example and please refer to vignette.
58
}
59
\references{
60
Pierre-Jean M, Deleuze J F, Le Floch E, et al. Clustering and variable selection evaluation of 13 unsupervised methods for multi-omics data integration[J]. Briefings in Bioinformatics, 2019.
61
62
intNMF:
63
Chalise P, Fridley BL. Integrative clustering of multi-level omic data based on non-negative matrix factorization algorithm. PLoS One. 2017;12(5):e0176278.
64
65
iClusterBayes:
66
Mo Q, Shen R, Guo C, Vannucci M, Chan KS, Hilsenbeck SG. A fully Bayesian latent variable model for integrative clustering analysis of multi-type omics data. Biostatistics. 2018;19(1):71-86.
67
68
SNF:
69
Wang B, Mezlini AM, Demir F, et al. Similarity network fusion for aggregating data types on a genomic scale. Nat Methods. 2014;11(3):333-337.
70
71
Mocluster:
72
Meng C, Helm D, Frejno M, Kuster B. moCluster: Identifying Joint Patterns Across Multiple Omics Data Sets. J Proteome Res. 2016;15(3):755-765.
73
74
LRAcluster:
75
Wu D, Wang D, Zhang MQ, Gu J. Fast dimension reduction and integrative clustering of multi-omics data using low-rank approximation: application to cancer molecular classification. BMC Genomics. 2015;16:1022.
76
77
CIMLR:
78
Ramazzotti D, Lal A, Wang B, Batzoglou S, Sidow A. Multi-omic tumor data reveal diversity of molecular mechanisms that correlate with survival. Nat Commun. 2018;9(1):4453.
79
80
PINSPlus:
81
Nguyen H, Shrestha S, Draghici S, Nguyen T. PINSPlus: a tool for tumor subtype discovery in integrated genomic data. Bioinformatics. 2019;35(16):2843-2846.
82
83
ConsensusClustering:
84
Monti S, Tamayo P, Mesirov J, et al. Consensus Clustering: A Resampling-Based Method for Class Discovery and Visualization of Gene Expression Microarray Data. Machine Learning. 2003;52:91-118.
85
86
NEMO:
87
Rappoport N, Shamir R. NEMO: cancer subtyping by integration of partial multi-omic data. Bioinformatics. 2019;35(18):3348-3356.
88
89
COCA:
90
Hoadley KA, Yau C, Wolf DM, et al. Multiplatform analysis of 12 cancer types reveals molecular classification within and across tissues of origin. Cell. 2014;158(4):929-944.
91
}