--- a +++ b/man/getMOIC.Rd @@ -0,0 +1,91 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/getMOIC.R +\name{getMOIC} +\alias{getMOIC} +\title{Get subtypes from multi-omics integrative clustering} +\usage{ +getMOIC( + data = NULL, + methodslist = list("SNF", "CIMLR", "PINSPlus", "NEMO", "COCA", "MoCluster", + "LRAcluster", "ConsensusClustering", "IntNMF", "iClusterBayes"), + N.clust = NULL, + type = rep("gaussian", length(data)), + ... +) +} +\arguments{ +\item{data}{List of matrices (Maximum number of matrices is 6).} + +\item{methodslist}{A string list specifying one or multiple methods to run (See Details).} + +\item{N.clust}{Number of clusters.} + +\item{type}{Data type corresponding to the list of matrics, which can be gaussian, binomial or possion.} + +\item{...}{Additionnal parameters for each method (only works when only one method chosen)} +} +\value{ +A list of results returned by each specified algorithms. +} +\description{ +Using `getMOIC()`, users can choose one out of the ten algorithms embedded in `MOVICS`. Users can implement multi-omics clustering in a simplest way of which the only requirement is to specify and at least specify a list of matrices (argument of `data`), a number of cluster (argument of `N.clust`), and clustering method (argument of `methodslist`) in `getMOIC()`. It is possible to pass various arguments that are specific to each method. Of course, users can also directly call different algorithms by using functions start with `get` and end with the name of the algorithm (e.g., `getSNF`; please refer to `?get%algorithm_name%` for more details about the editable arguments) +} +\details{ +Method for integrative clustering will be chosed according to the value of argument 'methodslist': + +If \code{methodslist == "IntNMF"}, Integrative clustering methods using Non-Negative Matrix Factorization + +If \code{methodslist == "SNF"}, Similarity network fusion. + +If \code{methodslist == "LRAcluster"}, Integrated cancer omics data analysis by low rank approximation. + +If \code{methodslist == "PINSPlus"}, Perturbation Clustering for data integration and disease subtyping + +If \code{methodslist == "ConsensusClustering"}, Consensus clustering + +If \code{methodslist == "NEMO"}, Neighborhood based multi-omics clustering + +If \code{methodslist == "COCA"}, Cluster Of Clusters Analysis + +If \code{methodslist == "CIMLR"}, Cancer Integration via Multikernel Learning (Support Feature Selection) + +If \code{methodslist == "MoCluster"}, Identifying joint patterns across multiple omics data sets (Support Feature Selection) + +If \code{methodslist == "iClusterBayes"}, Integrative clustering of multiple genomic data by fitting a Bayesian latent variable model (Support Feature Selection) +} +\examples{ +# There is no example and please refer to vignette. +} +\references{ +Pierre-Jean M, Deleuze J F, Le Floch E, et al. Clustering and variable selection evaluation of 13 unsupervised methods for multi-omics data integration[J]. Briefings in Bioinformatics, 2019. + +intNMF: +Chalise P, Fridley BL. Integrative clustering of multi-level omic data based on non-negative matrix factorization algorithm. PLoS One. 2017;12(5):e0176278. + +iClusterBayes: +Mo Q, Shen R, Guo C, Vannucci M, Chan KS, Hilsenbeck SG. A fully Bayesian latent variable model for integrative clustering analysis of multi-type omics data. Biostatistics. 2018;19(1):71-86. + +SNF: +Wang B, Mezlini AM, Demir F, et al. Similarity network fusion for aggregating data types on a genomic scale. Nat Methods. 2014;11(3):333-337. + +Mocluster: +Meng C, Helm D, Frejno M, Kuster B. moCluster: Identifying Joint Patterns Across Multiple Omics Data Sets. J Proteome Res. 2016;15(3):755-765. + +LRAcluster: +Wu D, Wang D, Zhang MQ, Gu J. Fast dimension reduction and integrative clustering of multi-omics data using low-rank approximation: application to cancer molecular classification. BMC Genomics. 2015;16:1022. + +CIMLR: +Ramazzotti D, Lal A, Wang B, Batzoglou S, Sidow A. Multi-omic tumor data reveal diversity of molecular mechanisms that correlate with survival. Nat Commun. 2018;9(1):4453. + +PINSPlus: +Nguyen H, Shrestha S, Draghici S, Nguyen T. PINSPlus: a tool for tumor subtype discovery in integrated genomic data. Bioinformatics. 2019;35(16):2843-2846. + +ConsensusClustering: +Monti S, Tamayo P, Mesirov J, et al. Consensus Clustering: A Resampling-Based Method for Class Discovery and Visualization of Gene Expression Microarray Data. Machine Learning. 2003;52:91-118. + +NEMO: +Rappoport N, Shamir R. NEMO: cancer subtyping by integration of partial multi-omic data. Bioinformatics. 2019;35(18):3348-3356. + +COCA: +Hoadley KA, Yau C, Wolf DM, et al. Multiplatform analysis of 12 cancer types reveals molecular classification within and across tissues of origin. Cell. 2014;158(4):929-944. +}