|
a |
|
b/man/getConsensusClustering.Rd |
|
|
1 |
% Generated by roxygen2: do not edit by hand |
|
|
2 |
% Please edit documentation in R/getConsensusClustering.R |
|
|
3 |
\name{getConsensusClustering} |
|
|
4 |
\alias{getConsensusClustering} |
|
|
5 |
\title{Get subtypes from ConsensusClustering} |
|
|
6 |
\usage{ |
|
|
7 |
getConsensusClustering( |
|
|
8 |
data = NULL, |
|
|
9 |
N.clust = NULL, |
|
|
10 |
type = rep("gaussian", length(data)), |
|
|
11 |
norMethod = "none", |
|
|
12 |
reps = 500, |
|
|
13 |
pItem = 0.8, |
|
|
14 |
pFeature = 0.8, |
|
|
15 |
clusterAlg = "hc", |
|
|
16 |
innerLinkage = "ward.D", |
|
|
17 |
finalLinkage = "ward.D", |
|
|
18 |
distance = "pearson", |
|
|
19 |
plot = NULL, |
|
|
20 |
writeTable = F, |
|
|
21 |
title = file.path(getwd(), "consensuscluster"), |
|
|
22 |
seed = 123456, |
|
|
23 |
verbose = F |
|
|
24 |
) |
|
|
25 |
} |
|
|
26 |
\arguments{ |
|
|
27 |
\item{data}{List of matrices.} |
|
|
28 |
|
|
|
29 |
\item{N.clust}{Number of clusters.} |
|
|
30 |
|
|
|
31 |
\item{type}{Data type corresponding to the list of matrics, which can be gaussian, binomial or possion.} |
|
|
32 |
|
|
|
33 |
\item{norMethod}{A string vector indicate the normalization method for consensus clustering.} |
|
|
34 |
|
|
|
35 |
\item{reps}{An integer value to indicate the number of subsamples.} |
|
|
36 |
|
|
|
37 |
\item{pItem}{A numerical value to indicate the proportion of items to sample.} |
|
|
38 |
|
|
|
39 |
\item{pFeature}{A numerical value to indicate the proportion of features to sample.} |
|
|
40 |
|
|
|
41 |
\item{clusterAlg}{A string value to indicate the cluster algorithm.} |
|
|
42 |
|
|
|
43 |
\item{innerLinkage}{A string value to indicate the heirachical linakge method for subsampling.} |
|
|
44 |
|
|
|
45 |
\item{finalLinkage}{A string value to indicate the heirarchical method for consensus matrix.} |
|
|
46 |
|
|
|
47 |
\item{distance}{A string value to indicate the distance function.} |
|
|
48 |
|
|
|
49 |
\item{plot}{A string value to indicate the output format for heatmap.} |
|
|
50 |
|
|
|
51 |
\item{writeTable}{A logical value to indicate if writing output and log to csv.} |
|
|
52 |
|
|
|
53 |
\item{title}{A string value for output directory.} |
|
|
54 |
|
|
|
55 |
\item{seed}{A numerical value to set random seed for reproducible results.} |
|
|
56 |
|
|
|
57 |
\item{verbose}{A logical value to indicate if printing messages to the screen to indicate progress.} |
|
|
58 |
} |
|
|
59 |
\value{ |
|
|
60 |
A list with the following components: |
|
|
61 |
|
|
|
62 |
\code{fit} an object returned by \link[ConsensusClusterPlus]{ConsensusClusterPlus}. |
|
|
63 |
|
|
|
64 |
\code{clust.res} a data.frame storing sample ID and corresponding clusters. |
|
|
65 |
|
|
|
66 |
\code{clust.dend} a dendrogram of sample clustering. |
|
|
67 |
|
|
|
68 |
\code{mo.method} a string value indicating the method used for multi-omics integrative clustering. |
|
|
69 |
} |
|
|
70 |
\description{ |
|
|
71 |
This function wraps the Consensus Clustering algorithm and provides standard output for `getMoHeatmap()` and `getConsensusMOIC()`. |
|
|
72 |
} |
|
|
73 |
\examples{ |
|
|
74 |
# There is no example and please refer to vignette. |
|
|
75 |
} |
|
|
76 |
\references{ |
|
|
77 |
Monti S, Tamayo P, Mesirov J, et al (2003). Consensus Clustering: A Resampling-Based Method for Class Discovery and Visualization of Gene Expression Microarray Data. Mach Learn, 52:91-118. |
|
|
78 |
} |