Switch to unified view

a b/man/getConsensusClustering.Rd
1
% Generated by roxygen2: do not edit by hand
2
% Please edit documentation in R/getConsensusClustering.R
3
\name{getConsensusClustering}
4
\alias{getConsensusClustering}
5
\title{Get subtypes from ConsensusClustering}
6
\usage{
7
getConsensusClustering(
8
  data = NULL,
9
  N.clust = NULL,
10
  type = rep("gaussian", length(data)),
11
  norMethod = "none",
12
  reps = 500,
13
  pItem = 0.8,
14
  pFeature = 0.8,
15
  clusterAlg = "hc",
16
  innerLinkage = "ward.D",
17
  finalLinkage = "ward.D",
18
  distance = "pearson",
19
  plot = NULL,
20
  writeTable = F,
21
  title = file.path(getwd(), "consensuscluster"),
22
  seed = 123456,
23
  verbose = F
24
)
25
}
26
\arguments{
27
\item{data}{List of matrices.}
28
29
\item{N.clust}{Number of clusters.}
30
31
\item{type}{Data type corresponding to the list of matrics, which can be gaussian, binomial or possion.}
32
33
\item{norMethod}{A string vector indicate the normalization method for consensus clustering.}
34
35
\item{reps}{An integer value to indicate the number of subsamples.}
36
37
\item{pItem}{A numerical value to indicate the proportion of items to sample.}
38
39
\item{pFeature}{A numerical value to indicate the proportion of features to sample.}
40
41
\item{clusterAlg}{A string value to indicate the cluster algorithm.}
42
43
\item{innerLinkage}{A string value to indicate the heirachical linakge method for subsampling.}
44
45
\item{finalLinkage}{A string value to indicate the heirarchical method for consensus matrix.}
46
47
\item{distance}{A string value to indicate the distance function.}
48
49
\item{plot}{A string value to indicate the output format for heatmap.}
50
51
\item{writeTable}{A logical value to indicate if writing output and log to csv.}
52
53
\item{title}{A string value for output directory.}
54
55
\item{seed}{A numerical value to set random seed for reproducible results.}
56
57
\item{verbose}{A logical value to indicate if printing messages to the screen to indicate progress.}
58
}
59
\value{
60
A list with the following components:
61
62
        \code{fit}        an object returned by \link[ConsensusClusterPlus]{ConsensusClusterPlus}.
63
64
        \code{clust.res}  a data.frame storing sample ID and corresponding clusters.
65
66
        \code{clust.dend} a dendrogram of sample clustering.
67
68
        \code{mo.method}  a string value indicating the method used for multi-omics integrative clustering.
69
}
70
\description{
71
This function wraps the Consensus Clustering algorithm and provides standard output for `getMoHeatmap()` and `getConsensusMOIC()`.
72
}
73
\examples{
74
# There is no example and please refer to vignette.
75
}
76
\references{
77
Monti S, Tamayo P, Mesirov J, et al (2003). Consensus Clustering: A Resampling-Based Method for Class Discovery and Visualization of Gene Expression Microarray Data. Mach Learn, 52:91-118.
78
}