--- a +++ b/man/getConsensusClustering.Rd @@ -0,0 +1,78 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/getConsensusClustering.R +\name{getConsensusClustering} +\alias{getConsensusClustering} +\title{Get subtypes from ConsensusClustering} +\usage{ +getConsensusClustering( + data = NULL, + N.clust = NULL, + type = rep("gaussian", length(data)), + norMethod = "none", + reps = 500, + pItem = 0.8, + pFeature = 0.8, + clusterAlg = "hc", + innerLinkage = "ward.D", + finalLinkage = "ward.D", + distance = "pearson", + plot = NULL, + writeTable = F, + title = file.path(getwd(), "consensuscluster"), + seed = 123456, + verbose = F +) +} +\arguments{ +\item{data}{List of matrices.} + +\item{N.clust}{Number of clusters.} + +\item{type}{Data type corresponding to the list of matrics, which can be gaussian, binomial or possion.} + +\item{norMethod}{A string vector indicate the normalization method for consensus clustering.} + +\item{reps}{An integer value to indicate the number of subsamples.} + +\item{pItem}{A numerical value to indicate the proportion of items to sample.} + +\item{pFeature}{A numerical value to indicate the proportion of features to sample.} + +\item{clusterAlg}{A string value to indicate the cluster algorithm.} + +\item{innerLinkage}{A string value to indicate the heirachical linakge method for subsampling.} + +\item{finalLinkage}{A string value to indicate the heirarchical method for consensus matrix.} + +\item{distance}{A string value to indicate the distance function.} + +\item{plot}{A string value to indicate the output format for heatmap.} + +\item{writeTable}{A logical value to indicate if writing output and log to csv.} + +\item{title}{A string value for output directory.} + +\item{seed}{A numerical value to set random seed for reproducible results.} + +\item{verbose}{A logical value to indicate if printing messages to the screen to indicate progress.} +} +\value{ +A list with the following components: + + \code{fit} an object returned by \link[ConsensusClusterPlus]{ConsensusClusterPlus}. + + \code{clust.res} a data.frame storing sample ID and corresponding clusters. + + \code{clust.dend} a dendrogram of sample clustering. + + \code{mo.method} a string value indicating the method used for multi-omics integrative clustering. +} +\description{ +This function wraps the Consensus Clustering algorithm and provides standard output for `getMoHeatmap()` and `getConsensusMOIC()`. +} +\examples{ +# There is no example and please refer to vignette. +} +\references{ +Monti S, Tamayo P, Mesirov J, et al (2003). Consensus Clustering: A Resampling-Based Method for Class Discovery and Visualization of Gene Expression Microarray Data. Mach Learn, 52:91-118. +}