|
a |
|
b/man/getClustNum.Rd |
|
|
1 |
% Generated by roxygen2: do not edit by hand |
|
|
2 |
% Please edit documentation in R/getClustNum.R |
|
|
3 |
\name{getClustNum} |
|
|
4 |
\alias{getClustNum} |
|
|
5 |
\title{Get estimation of optimal clustering number} |
|
|
6 |
\usage{ |
|
|
7 |
getClustNum( |
|
|
8 |
data = NULL, |
|
|
9 |
is.binary = rep(FALSE, length(data)), |
|
|
10 |
try.N.clust = 2:8, |
|
|
11 |
center = TRUE, |
|
|
12 |
scale = TRUE, |
|
|
13 |
fig.path = getwd(), |
|
|
14 |
fig.name = "optimal_number_cluster" |
|
|
15 |
) |
|
|
16 |
} |
|
|
17 |
\arguments{ |
|
|
18 |
\item{data}{List of matrices.} |
|
|
19 |
|
|
|
20 |
\item{is.binary}{A logicial vector to indicate if the subdata is binary matrix of 0 and 1 such as mutation.} |
|
|
21 |
|
|
|
22 |
\item{try.N.clust}{A integer vector to indicate possible choices of number of clusters.} |
|
|
23 |
|
|
|
24 |
\item{center}{A logical value to indicate if the variables should be centered. TRUE by default.} |
|
|
25 |
|
|
|
26 |
\item{scale}{A logical value to indicate if the variables should be scaled. FALSE by default.} |
|
|
27 |
|
|
|
28 |
\item{fig.path}{A string value to indicate the output figure path.} |
|
|
29 |
|
|
|
30 |
\item{fig.name}{A string value to indicate the name of the figure.} |
|
|
31 |
} |
|
|
32 |
\value{ |
|
|
33 |
A figure that helps to choose the optimal clustering number (argument of `N.clust`) for `get%algorithm_name%()` or `getMOIC()`, and a list contains the following components: |
|
|
34 |
|
|
|
35 |
\code{CPI} possible cluster number identified by clustering prediction index |
|
|
36 |
|
|
|
37 |
\code{Gapk} possible cluster number identified by Gap-statistics |
|
|
38 |
} |
|
|
39 |
\description{ |
|
|
40 |
This function provides two measurements (i.e., clustering prediction index [CPI] and Gap-statistics) and aims to search the optimal number for multi-omics integrative clustering. In short, the peaks reach by the red (CPI) and blue (Gap-statistics) lines should be referred to determine `N.clust`. |
|
|
41 |
} |
|
|
42 |
\examples{ |
|
|
43 |
# There is no example and please refer to vignette. |
|
|
44 |
} |
|
|
45 |
\references{ |
|
|
46 |
Chalise P, Fridley BL (2017). Integrative clustering of multi-level omic data based on non-negative matrix factorization algorithm. PLoS One, 12(5):e0176278. |
|
|
47 |
|
|
|
48 |
Tibshirani, R., Walther, G., Hastie, T. (2001). Estimating the number of data clusters via the Gap statistic. J R Stat Soc Series B Stat Methodol, 63(2):411-423. |
|
|
49 |
} |