Diff of /man/getClustNum.Rd [000000] .. [494cbf]

Switch to side-by-side view

--- a
+++ b/man/getClustNum.Rd
@@ -0,0 +1,49 @@
+% Generated by roxygen2: do not edit by hand
+% Please edit documentation in R/getClustNum.R
+\name{getClustNum}
+\alias{getClustNum}
+\title{Get estimation of optimal clustering number}
+\usage{
+getClustNum(
+  data = NULL,
+  is.binary = rep(FALSE, length(data)),
+  try.N.clust = 2:8,
+  center = TRUE,
+  scale = TRUE,
+  fig.path = getwd(),
+  fig.name = "optimal_number_cluster"
+)
+}
+\arguments{
+\item{data}{List of matrices.}
+
+\item{is.binary}{A logicial vector to indicate if the subdata is binary matrix of 0 and 1 such as mutation.}
+
+\item{try.N.clust}{A integer vector to indicate possible choices of number of clusters.}
+
+\item{center}{A logical value to indicate if the variables should be centered. TRUE by default.}
+
+\item{scale}{A logical value to indicate if the variables should be scaled. FALSE by default.}
+
+\item{fig.path}{A string value to indicate the output figure path.}
+
+\item{fig.name}{A string value to indicate the name of the figure.}
+}
+\value{
+A figure that helps to choose the optimal clustering number (argument of `N.clust`) for `get%algorithm_name%()` or `getMOIC()`, and a list contains the following components:
+
+        \code{CPI}   possible cluster number identified by clustering prediction index
+
+        \code{Gapk}  possible cluster number identified by Gap-statistics
+}
+\description{
+This function provides two measurements (i.e., clustering prediction index [CPI] and Gap-statistics) and aims to search the optimal number for multi-omics integrative clustering. In short, the peaks reach by the red (CPI) and blue (Gap-statistics) lines should be referred to determine `N.clust`.
+}
+\examples{
+# There is no example and please refer to vignette.
+}
+\references{
+Chalise P, Fridley BL (2017). Integrative clustering of multi-level omic data based on non-negative matrix factorization algorithm. PLoS One, 12(5):e0176278.
+
+Tibshirani, R., Walther, G., Hastie, T. (2001). Estimating the number of data clusters via the Gap statistic. J R Stat Soc Series B Stat Methodol, 63(2):411-423.
+}