|
a |
|
b/man/compTMB.Rd |
|
|
1 |
% Generated by roxygen2: do not edit by hand |
|
|
2 |
% Please edit documentation in R/compTMB.R |
|
|
3 |
\name{compTMB} |
|
|
4 |
\alias{compTMB} |
|
|
5 |
\title{Comparsion of total mutation burden} |
|
|
6 |
\usage{ |
|
|
7 |
compTMB( |
|
|
8 |
moic.res = NULL, |
|
|
9 |
maf = NULL, |
|
|
10 |
rmDup = TRUE, |
|
|
11 |
rmFLAGS = FALSE, |
|
|
12 |
nonSyn = NULL, |
|
|
13 |
exome.size = 38, |
|
|
14 |
clust.col = c("#2EC4B6", "#E71D36", "#FF9F1C", "#BDD5EA", "#FFA5AB", "#011627", |
|
|
15 |
"#023E8A", "#9D4EDD"), |
|
|
16 |
test.method = "nonparametric", |
|
|
17 |
show.size = TRUE, |
|
|
18 |
fig.path = getwd(), |
|
|
19 |
fig.name = NULL, |
|
|
20 |
width = 6, |
|
|
21 |
height = 6 |
|
|
22 |
) |
|
|
23 |
} |
|
|
24 |
\arguments{ |
|
|
25 |
\item{moic.res}{An object returned by `getMOIC()` with one specified algorithm or `get\%algorithm_name\%` or `getConsensusMOIC()` with a list of multiple algorithms.} |
|
|
26 |
|
|
|
27 |
\item{maf}{A data frame of MAF file that has been already read with at least 10 columns as following: c('Tumor_Sample_Barcode', 'Hugo_Symbol', 'Chromosome', 'Start_Position', 'End_Position', 'Variant_Classification', 'Variant_Type', 'Reference_Allele', 'Tumor_Seq_Allele1', 'Tumor_Seq_Allele2')} |
|
|
28 |
|
|
|
29 |
\item{rmDup}{A logical value to indicate if removing repeated variants in a particuar sample, mapped to multiple transcripts of same Gene. TRUE by default.} |
|
|
30 |
|
|
|
31 |
\item{rmFLAGS}{A logical value to indicate if removing possible FLAGS. These FLAGS genes are often non-pathogenic and passengers, but are frequently mutated in most of the public exome studies, some of which are fishy. Examples of such genes include TTN, MUC16, etc. FALSE by default.} |
|
|
32 |
|
|
|
33 |
\item{nonSyn}{A string vector to indicate a list of variant claccifications that should be considered as non-synonymous and the rest will be considered synonymous (silent) variants. Default value of NULL uses Variant Classifications with High/Moderate variant consequences, including c('Frame_Shift_Del', 'Frame_Shift_Ins', 'Splice_Site', 'Translation_Start_Site', 'Nonsense_Mutation', 'Nonstop_Mutation', 'In_Frame_Del', 'In_Frame_Ins', 'Missense_Mutation'). See details at \url{http://asia.ensembl.org/Help/Glossary?id=535}} |
|
|
34 |
|
|
|
35 |
\item{exome.size}{An integer value to indicate the estimation of exome size. 38 by default (see \url{https://genomemedicine.biomedcentral.com/articles/10.1186/s13073-017-0424-2}).} |
|
|
36 |
|
|
|
37 |
\item{clust.col}{A string vector storing colors for annotating each Subtype.} |
|
|
38 |
|
|
|
39 |
\item{test.method}{A string value to indicate the method for statistical testing. Allowed values contain c('nonparametric', 'parametric'); nonparametric means two-sample wilcoxon rank sum test for two subtypes and Kruskal-Wallis rank sum test for multiple subtypes; parametric means two-sample t-test when only two subtypes are identified, and anova for multiple subtypes comparison; "nonparametric" by default.} |
|
|
40 |
|
|
|
41 |
\item{show.size}{A logical value to indicate if showing the sample size within each subtype at the top of the figure. TRUE by default.} |
|
|
42 |
|
|
|
43 |
\item{fig.path}{A string value to indicate the output path for storing the boxviolin plot.} |
|
|
44 |
|
|
|
45 |
\item{fig.name}{A string value to indicate the name of the boxviolin plot.} |
|
|
46 |
|
|
|
47 |
\item{width}{A numeric value to indicate the width of boxviolin plot.} |
|
|
48 |
|
|
|
49 |
\item{height}{A numeric value to indicate the height of boxviolin plot.} |
|
|
50 |
} |
|
|
51 |
\value{ |
|
|
52 |
A figure of TMB and TiTv distribution (.pdf) and a list with the following components: |
|
|
53 |
|
|
|
54 |
\code{TMB.dat} a data.frame storing the TMB per sample within each subtype. |
|
|
55 |
|
|
|
56 |
\code{TMB.median} a data.frame storing the median of TMB for each subtype. |
|
|
57 |
|
|
|
58 |
\code{titv.dat} a data.frame storing the fraction contributions of TiTv per sample within each subtype. |
|
|
59 |
|
|
|
60 |
\code{maf.nonsilent} a data.frame storing the information for non-synonymous mutations. |
|
|
61 |
|
|
|
62 |
\code{maf.silent} a data.frame storing the information for synonymous mutations. |
|
|
63 |
|
|
|
64 |
\code{maf.FLAGS} a data.frame storing the information for FLAGS mutations if\code{rmFLAGS = TRUE}. |
|
|
65 |
|
|
|
66 |
\code{FLAGS.count} a data.frame storing the summarization per FLAGS if\code{rmFLAGS = TRUE}. |
|
|
67 |
} |
|
|
68 |
\description{ |
|
|
69 |
This function calculates Total Mutation Burden (TMB) compares them among curent subtypes identified from multi-omics integrative clustering algorithms. |
|
|
70 |
} |
|
|
71 |
\examples{ |
|
|
72 |
# There is no example and please refer to vignette. |
|
|
73 |
} |
|
|
74 |
\references{ |
|
|
75 |
Mayakonda A, Lin D, Assenov Y, Plass C, Koeffler PH (2018). Maftools: efficient and comprehensive analysis of somatic variants in cancer. Genome Res, 28(11): 1747-1756. |
|
|
76 |
|
|
|
77 |
Shyr C, Tarailo-Graovac M, Gottlieb M, Lee JJ, van Karnebeek C, Wasserman WW. (2014). FLAGS, frequently mutated genes in public exomes. BMC Med Genomics, 7(1): 1-14. |
|
|
78 |
|
|
|
79 |
Chalmers Z R, Connelly C F, Fabrizio D, et al. (2017). Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Med, 9(1):34. |
|
|
80 |
} |