--- a +++ b/R/runNTP.R @@ -0,0 +1,89 @@ +#' @name runNTP +#' @title Run nearest template prediction +#' @description Using Nearest Template Prediction (NTP) based on predefined templates derived from current identified subtypes to assign potential subtype label on external cohort. +#' @param expr A numeric matrix with row features and sample columns; data is recommended to be z-scored. +#' @param templates A data frame with at least two columns; class (coerced to factor) and probe (coerced to character). +#' @param scaleFlag A logic value to indicate if the expression data should be further scaled. TRUE by default. +#' @param centerFlag A logic value to indicate if the expression data should be further centered. TRUE by default. +#' @param nPerm An integer value to indicate the permutations for p-value estimation. +#' @param distance A string value to indicate the distance measurement. Allowed values contain c('cosine', 'pearson', 'spearman', 'kendall'); "cosine" by default. +#' @param seed An integer value for p-value reproducibility. +#' @param verbose A logic value to indicate whether console messages are to be displayed; TRUE by default. +#' @param doPlot A logic value to indicate whether to produce prediction heatmap; FALSE by default. +#' @param fig.path A string value to indicate the output path for storing the nearest template prediction heatmap. +#' @param fig.name A string value to indicate the name of the nearest template prediction heatmap. +#' @param width A numeric value to indicate the width of output figure. +#' @param height A numeric value to indicate the height of output figure. +#' @return A figure of predictive heatmap by NTP (.pdf) and a list with the following components: +#' +#' \code{ntp.res} a data.frame storing the results of nearest template prediction (see \link[CMScaller]{ntp}). +#' +#' \code{clust.res} similar to `clust.res` returned by `getMOIC()` or `get%algorithm_name%` or `getConsensusMOIC()`. +#' +#' \code{mo.method} a string value indicating the method used for prediction. +#' @export +#' @importFrom CMScaller ntp subHeatmap +#' @importFrom grDevices dev.copy2pdf +#' @examples # There is no example and please refer to vignette. +#' @references Hoshida, Y. (2010). Nearest Template Prediction: A Single-Sample-Based Flexible Class Prediction with Confidence Assessment. PLoS ONE 5, e15543. +runNTP <- function(expr = NULL, + templates = NULL, + scaleFlag = TRUE, + centerFlag = TRUE, + nPerm = 1000, + distance = "cosine", + seed = 123456, + verbose = TRUE, + doPlot = FALSE, + fig.path = getwd(), + fig.name = "ntpheatmap", + width = 5, + height = 5) { + + # message("Using up- or down-regulated biomarkers (templates) are highly recommended.\n") + + if(!is.element(distance, c("cosine", "pearson", "spearman", "kendall"))) { + stop("the argument of distance should be one of cosine, pearson, spearman, or kendall.") + } + + com_feat <- intersect(rownames(expr), templates$probe) + message(paste0("--original template has ",nrow(templates), " biomarkers and ", length(com_feat)," are matched in external expression profile.")) + expr <- expr[com_feat, , drop = FALSE] + templates <- templates[which(templates$probe %in% com_feat), , drop = FALSE] + + if(is.element(0,as.numeric(table(templates$class)))) { + stop("at least one class has no probes/genes matched in template file!") + } + + emat <- t(scale(t(expr), scale = scaleFlag, center = centerFlag)) + if(doPlot) { + outFig <- paste0(fig.name,".pdf") + ntp.res <- ntp(emat = emat, + templates = templates, + doPlot = doPlot, + nPerm = nPerm, + distance = distance, + nCores = 1, + seed = seed, + verbose = verbose) + invisible(dev.copy2pdf(file = file.path(fig.path, outFig), width = width, height = height)) + + } else { + ntp.res <- ntp(emat = emat, + templates = templates, + doPlot = doPlot, + nPerm = nPerm, + distance = distance, + nCores = 1, + seed = seed, + verbose = verbose) + } + + ntp.res[,setdiff(colnames(ntp.res),"prediction")] <- round(ntp.res[,setdiff(colnames(ntp.res),"prediction")], 4) + ex.moic.res <- data.frame(samID = rownames(ntp.res), + clust = gsub("CS","",ntp.res$prediction), + row.names = rownames(ntp.res), + stringsAsFactors = FALSE) + + return(list(ntp.res = ntp.res, clust.res = ex.moic.res, mo.method = "NTP")) +}