Diff of /R/runGSVA.R [000000] .. [494cbf]

Switch to side-by-side view

--- a
+++ b/R/runGSVA.R
@@ -0,0 +1,173 @@
+#' @name runGSVA
+#' @title Run gene set variation analysis
+#' @description Use gene set variation analysis to calculate enrichment score of each sample in each subtype based on given gene set list of interest.
+#' @param moic.res An object returned by `getMOIC()` with one specified algorithm or `get\%algorithm_name\%` or `getConsensusMOIC()` with a list of multiple algorithms.
+#' @param norm.expr A matrix of normalized expression data with rows for genes and columns for samples; FPKM or TPM without log2 transformation is recommended.
+#' @param gset.gmt.path A string value to indicate ABSOULUTE PATH/NAME of gene sets of interest stored as GMT format \url{https://software.broadinstitute.org/cancer/software/gsea/wiki/index.php/Data_formats#GMT:_Gene_Matrix_Transposed_file_format_.28.2A.gmt.29}.
+#' @param annCol A data.frame storing annotation information for samples.
+#' @param annColors A list of string vectors for colors matched with annCol.
+#' @param clust.col A string vector storing colors for annotating each subtype at the top of heatmap.
+#' @param halfwidth A numeric value to assign marginal cutoff for truncating enrichment scores; 1 by default.
+#' @param centerFlag A logical vector to indicate if enrichment scores should be centered; TRUE by default.
+#' @param scaleFlag A logical vector to indicate if enrichment scores should be scaled; TRUE by default.
+#' @param distance A string value of distance measurement for hierarchical clustering; 'euclidean' by default.
+#' @param linkage A string value of clustering method for hierarchical clustering; 'ward.D' by default.
+#' @param show_rownames A logic value to indicate if showing rownames (feature names) in heatmap; TRUE by default.
+#' @param show_colnames A logic value to indicate if showing colnames (sample ID) in heatmap; FALSE by default.
+#' @param color A string vector storing colors for heatmap.
+#' @param fig.path A string value to indicate the output path for storing the enrichment heatmap.
+#' @param fig.name A string value to indicate the name of the enrichment heatmap.
+#' @param width A numeric value to indicate the width of output figure.
+#' @param height A numeric value to indicate the height of output figure.
+#' @param ... Additional parameters pass to \link[ComplexHeatmap]{pheatmap}.
+#'
+#' @return A figure of enrichment heatmap (.pdf) and a list with the following components:
+#'
+#'         \code{gset.list}  a list storing gene sets information converted from GMT format by \link[clusterProfiler]{read.gmt}.
+#'
+#'         \code{raw.es}     a data.frame storing raw enrichment score based on given gene sets of interest by using specified \code{gsva.method}.
+#'
+#'         \code{scaled.es}  a data.frame storing z-scored enrichment score based on given gene sets of interest by using specified \code{gsva.method}.
+#'
+#' @export
+#' @importFrom ClassDiscovery distanceMatrix
+#' @importFrom clusterProfiler read.gmt
+#' @importFrom GSVA gsva
+#' @importFrom ComplexHeatmap pheatmap draw ht_opt
+#' @importFrom grDevices pdf dev.off colorRampPalette
+#' @references Barbie, D.A. et al. (2009). Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature, 462(5):108-112.
+#'
+#' Hänzelmann, S., Castelo, R. and Guinney, J. (2013). GSVA: Gene set variation analysis for microarray and RNA-Seq data. BMC Bioinformatics, 14(1):7.
+#'
+#' Lee, E. et al. (2008). Inferring pathway activity toward precise disease classification. PLoS Comp Biol, 4(11):e1000217.
+#'
+#' Tomfohr, J. et al. (2005). Pathway level analysis of gene expression using singular value decomposition. BMC Bioinformatics, 6(1):1-11.
+#'
+#' Yu G, Wang L, Han Y, He Q (2012). clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS, 16(5):284-287.
+#' @examples # There is no example and please refer to vignette.
+runGSVA <- function(moic.res      = NULL,
+                    norm.expr     = NULL,
+                    gset.gmt.path = NULL,
+                    gsva.method   = "gsva",
+                    centerFlag    = TRUE,
+                    scaleFlag     = TRUE,
+                    halfwidth     = 1,
+                    annCol        = NULL,
+                    annColors     = NULL,
+                    clust.col     = c("#2EC4B6","#E71D36","#FF9F1C","#BDD5EA","#FFA5AB","#011627","#023E8A","#9D4EDD"),
+                    distance      = "euclidean",
+                    linkage       = "ward.D",
+                    show_rownames = TRUE,
+                    show_colnames = FALSE,
+                    color         = c("#366A9B", "#4E98DE", "#DDDDDD", "#FBCFA7", "#F79C4A"),
+                    fig.path      = getwd(),
+                    fig.name      = NULL,
+                    width         = 8,
+                    height        = 8,
+                    ...) {
+  
+  # standardize function
+  standarize.fun <- function(indata=NULL, halfwidth=NULL, centerFlag=TRUE, scaleFlag=TRUE) {
+    outdata=t(scale(t(indata), center=centerFlag, scale=scaleFlag))
+    if (!is.null(halfwidth)) {
+      outdata[outdata>halfwidth]=halfwidth
+      outdata[outdata<(-halfwidth)]= -halfwidth
+    }
+    return(outdata)
+  }
+  
+  # check data
+  comsam <- intersect(moic.res$clust.res$samID, colnames(norm.expr))
+  if(length(comsam) == nrow(moic.res$clust.res)) {
+    message("--all samples matched.")
+  } else {
+    message(paste0("--",(nrow(moic.res$clust.res)-length(comsam))," samples mismatched from current subtypes."))
+  }
+  
+  moic.res$clust.res <- moic.res$clust.res[comsam, , drop = FALSE]
+  norm.expr <- norm.expr[,comsam]
+  n.moic <- length(unique(moic.res$clust.res$clust))
+  
+  # load gene set data and convert gmt to data.frame
+  gset <- try(clusterProfiler::read.gmt(gset.gmt.path), silent = TRUE)
+  if(class(gset) == "try-error") {stop("please provide correct ABSOLUTE PATH for gene sets of interest.")}
+  
+  # convert data.frame to list
+  term <- unique(gset[,1])
+  gset.list <- list()
+  for (i in term) {
+    gset.list[[i]] <- gset[which(gset[,1] == i),2]
+  }
+  
+  # calculate gene set enrichment scores
+  if(max(norm.expr) < 25 | (max(norm.expr) >= 25 & min(norm.expr) < 0)) {
+    message("--expression profile seems to have been standardised (z-score or log transformation), no more action will be performed.")
+  }
+  if(max(norm.expr) >= 25 & min(norm.expr) >= 0){
+    message("--log2 transformation done for expression data.")
+    norm.expr <- log2(norm.expr + 1)
+  }
+  
+  es <- GSVA::gsva(expr          = as.matrix(norm.expr),
+                   gset.idx.list = gset.list,
+                   method        = gsva.method,
+                   parallel.sz   = 1)
+  es.backup <- es
+  es <- standarize.fun(es, halfwidth = halfwidth, centerFlag = centerFlag, scaleFlag = scaleFlag)
+  message(gsva.method," done...")
+  
+  if(is.null(fig.name)) {
+    outFig <- paste0("enrichment_heatmap_using_", gsva.method, ".pdf")
+  } else {
+    outFig <- paste0(fig.name, "_", gsva.method, ".pdf")
+  }
+  
+  sam.order <- moic.res$clust.res[order(moic.res$clust.res$clust, decreasing = FALSE), "samID"]
+  colvec <- clust.col[1:n.moic]
+  names(colvec) <- paste0("CS",1:n.moic)
+  if(!is.null(annCol) & !is.null(annColors)) {
+    annCol <- annCol[sam.order, , drop = FALSE]
+    annCol$Subtype <- paste0("CS",moic.res$clust.res[sam.order,"clust"])
+    annColors[["Subtype"]] <- colvec
+  } else {
+    annCol <- data.frame("Subtype" = paste0("CS",moic.res$clust.res[sam.order,"clust"]),
+                         row.names = sam.order,
+                         stringsAsFactors = FALSE)
+    annColors <- list("Subtype" = colvec)
+  }
+  
+  if(!is.null(annCol) & !is.null(annColors)) {
+    for (i in names(annColors)) {
+      if(is.function(annColors[[i]])) {
+        annColors[[i]] <- annColors[[i]](pretty(range(annCol[,i]),n = 64)) # transformat colorRamp2 function to color vector
+      }
+    }
+  }
+  
+  ht_opt$message = FALSE
+  if(is.null(distance) | is.null(linkage)) {
+    hcg <- FALSE
+  } else {
+    hcg <- hclust(ClassDiscovery::distanceMatrix(t(as.matrix(es[,sam.order])), distance), linkage)
+  }
+  hm <- ComplexHeatmap::pheatmap(mat               = es[,sam.order],
+                                 border_color      = NA,
+                                 cluster_cols      = FALSE,
+                                 cluster_rows      = hcg,
+                                 annotation_col    = annCol,
+                                 annotation_colors = annColors,
+                                 show_rownames     = show_rownames,
+                                 show_colnames     = show_colnames,
+                                 color             = grDevices::colorRampPalette(color)(64),
+                                 ...)
+  
+  # save to pdf
+  pdf(file.path(fig.path, outFig), width = width, height = height)
+  draw(hm)
+  invisible(dev.off())
+  
+  # print to screen
+  draw(hm)
+  
+  return(list(gset.list = gset.list, raw.es = es.backup, scaled.es = es))
+}
\ No newline at end of file