|
a |
|
b/R/getSNF.R |
|
|
1 |
#' @name getSNF |
|
|
2 |
#' @title Get subtypes from SNF |
|
|
3 |
#' @description This function wraps the SNF (Similarity Network Fusion) algorithm and provides standard output for `getMoHeatmap()` and `getConsensusMOIC()`. |
|
|
4 |
#' @param data List of matrices. |
|
|
5 |
#' @param N.clust Number of clusters. |
|
|
6 |
#' @param K An integer value to indicate the number of neighbors in K-nearest neighbors part of the algorithm. |
|
|
7 |
#' @param t An integer value to indicate the number of interations for the diffusion process. |
|
|
8 |
#' @param sigma A numerical value to indicate the variance for local model. |
|
|
9 |
#' @param type Data type corresponding to the list of matrics, which can be gaussian, binomial or possion. |
|
|
10 |
#' @return A list with the following components: |
|
|
11 |
#' |
|
|
12 |
#' \code{fit} an object returned by \link[SNFtool]{SNF}. |
|
|
13 |
#' |
|
|
14 |
#' \code{clust.res} a data.frame storing sample ID and corresponding clusters. |
|
|
15 |
#' |
|
|
16 |
#' \code{mo.method} a string value indicating the method used for multi-omics integrative clustering. |
|
|
17 |
#' @export |
|
|
18 |
#' @examples # There is no example and please refer to vignette. |
|
|
19 |
#' @import SNFtool |
|
|
20 |
#' @importFrom dplyr %>% |
|
|
21 |
#' @references Wang B, Mezlini AM, Demir F, et al (2014). Similarity network fusion for aggregating data types on a genomic scale. Nat Methods, 11(3):333-337. |
|
|
22 |
getSNF <- function(data = NULL, |
|
|
23 |
N.clust = NULL, |
|
|
24 |
type = rep("gaussian", length(data)), |
|
|
25 |
K = 30, |
|
|
26 |
t = 20, |
|
|
27 |
sigma = 0.5){ |
|
|
28 |
|
|
|
29 |
# check data |
|
|
30 |
n_dat <- length(data) |
|
|
31 |
if(n_dat > 6){ |
|
|
32 |
stop('current verision of MOVICS can support up to 6 datasets.') |
|
|
33 |
} |
|
|
34 |
if(n_dat < 2){ |
|
|
35 |
stop('current verision of MOVICS needs at least 2 omics data.') |
|
|
36 |
} |
|
|
37 |
|
|
|
38 |
useless.argument <- type |
|
|
39 |
data <- lapply(data, t) |
|
|
40 |
|
|
|
41 |
dat <- lapply(data, function (dd){ |
|
|
42 |
dd <- dd %>% as.matrix |
|
|
43 |
W <- dd %>% SNFtool::dist2(dd) %>% SNFtool::affinityMatrix(K = K, sigma = sigma) |
|
|
44 |
}) |
|
|
45 |
W <- SNFtool::SNF(Wall = dat, |
|
|
46 |
K = K, |
|
|
47 |
t = t) |
|
|
48 |
clust.SNF = W %>% SNFtool::spectralClustering(N.clust) |
|
|
49 |
|
|
|
50 |
clustres <- data.frame(samID = rownames(data[[1]]), |
|
|
51 |
clust = clust.SNF, |
|
|
52 |
row.names = rownames(data[[1]]), |
|
|
53 |
stringsAsFactors = FALSE) |
|
|
54 |
#clustres <- clustres[order(clustres$clust),] |
|
|
55 |
|
|
|
56 |
return(list(fit = W, clust.res = clustres, mo.method = "SNF")) |
|
|
57 |
} |