|
a |
|
b/R/getPINSPlus.R |
|
|
1 |
#' @name getPINSPlus |
|
|
2 |
#' @title Get subtypes from PINSPlus |
|
|
3 |
#' @description This function wraps the PINSPlus (Perturbation Clustering for data INtegration and disease Subtyping) algorithm and provides standard output for `getMoHeatmap()` and `getConsensusMOIC()`. |
|
|
4 |
#' @param data List of matrices. |
|
|
5 |
#' @param N.clust Number of clusters |
|
|
6 |
#' @param clusteringMethod The name of built-in clustering algorithm that PerturbationClustering will use. Currently supported algorithm are kmeans, pam and hclust. Default value is "kmeans". |
|
|
7 |
#' @param iterMin The minimum number of iterations. Default value is 50 |
|
|
8 |
#' @param iterMax The maximum number of iterations. Default value is 500. |
|
|
9 |
#' @param norMethod A string vector indicate the normalization method for consensus clustering. |
|
|
10 |
#' @param type Data type corresponding to the list of matrics, which can be gaussian, binomial or possion. |
|
|
11 |
#' @return A list with the following components: |
|
|
12 |
#' |
|
|
13 |
#' \code{fit} an object returned by \link[PINSPlus]{PerturbationClustering}. |
|
|
14 |
#' |
|
|
15 |
#' \code{clust.res} a data.frame storing sample ID and corresponding clusters. |
|
|
16 |
#' |
|
|
17 |
#' \code{mo.method} a string value indicating the method used for multi-omics integrative clustering. |
|
|
18 |
#' @export |
|
|
19 |
#' @examples # There is no example and please refer to vignette. |
|
|
20 |
#' @importFrom PINSPlus PerturbationClustering |
|
|
21 |
#' @importFrom dplyr %>% |
|
|
22 |
#' @references Nguyen H, Shrestha S, Draghici S, Nguyen T (2019). PINSPlus: a tool for tumor subtype discovery in integrated genomic data. Bioinformatics, 35(16):2843-2846. |
|
|
23 |
getPINSPlus <- function(data = NULL, |
|
|
24 |
N.clust = NULL, |
|
|
25 |
type = rep("gaussian", length(data)), |
|
|
26 |
norMethod = "none", |
|
|
27 |
clusteringMethod = "kmeans", |
|
|
28 |
iterMin = 50, |
|
|
29 |
iterMax = 500){ |
|
|
30 |
|
|
|
31 |
# check data |
|
|
32 |
n_dat <- length(data) |
|
|
33 |
if(n_dat > 6){ |
|
|
34 |
stop('current verision of MOVICS can support up to 6 datasets.') |
|
|
35 |
} |
|
|
36 |
if(n_dat < 2){ |
|
|
37 |
stop('current verision of MOVICS needs at least 2 omics data.') |
|
|
38 |
} |
|
|
39 |
|
|
|
40 |
useless.argument <- type |
|
|
41 |
if(is.null(norMethod)) { |
|
|
42 |
d <- do.call(rbind, data) |
|
|
43 |
} else { |
|
|
44 |
if(!is.element(norMethod, c("median-centered","mean-centered","z-score","none"))) { |
|
|
45 |
stop("the normalized method should be one of median-centered, mean-centered, z-score or none!") |
|
|
46 |
} |
|
|
47 |
if(norMethod == "median-centered") { |
|
|
48 |
d <- do.call(rbind, data) |
|
|
49 |
d <- sweep(d,1, apply(d, 1, median, na.rm = TRUE)) |
|
|
50 |
} |
|
|
51 |
if(norMethod == "mean-centered") { |
|
|
52 |
d <- do.call(rbind, data) |
|
|
53 |
d <- sweep(d,1, apply(d, 1, mean, na.rm = TRUE)) |
|
|
54 |
} |
|
|
55 |
if(norMethod == "z-score") { |
|
|
56 |
d <- do.call(rbind, data) |
|
|
57 |
d <- t(scale(t(d))) |
|
|
58 |
} |
|
|
59 |
if(norMethod == "none") { |
|
|
60 |
d <- do.call(rbind, data) |
|
|
61 |
} |
|
|
62 |
} |
|
|
63 |
|
|
|
64 |
if(!is.element(clusteringMethod, c("kmeans", "hclust", "pam"))) { |
|
|
65 |
stop("clusteringMethod should be one of kmeans, hclust, or pam!") |
|
|
66 |
} |
|
|
67 |
|
|
|
68 |
data <- t(d) |
|
|
69 |
|
|
|
70 |
# for multi-omics but cannot determine cluster number |
|
|
71 |
# fit <- SubtypingOmicsData(data, |
|
|
72 |
# kMin = N.clust, |
|
|
73 |
# kMax = N.clust, |
|
|
74 |
# clusteringMethod = clusteringMethod, |
|
|
75 |
# iterMin = iterMin, |
|
|
76 |
# iterMax = iterMax, |
|
|
77 |
# verbose = T) |
|
|
78 |
|
|
|
79 |
# for one "feature" but can determine cluster number |
|
|
80 |
fit <- PerturbationClustering(data = data, |
|
|
81 |
kMin = N.clust, |
|
|
82 |
kMax = N.clust, |
|
|
83 |
clusteringMethod = clusteringMethod, |
|
|
84 |
iterMin = iterMin, |
|
|
85 |
iterMax = iterMax, |
|
|
86 |
verbose = TRUE) |
|
|
87 |
|
|
|
88 |
clustres <- data.frame(samID = rownames(data), |
|
|
89 |
clust = fit$cluster, |
|
|
90 |
row.names = rownames(data), |
|
|
91 |
stringsAsFactors = FALSE) |
|
|
92 |
#clustres <- clustres[order(clustres$clust),] |
|
|
93 |
|
|
|
94 |
return(list(fit = fit, clust.res = clustres, mo.method = "PINSPlus")) |
|
|
95 |
} |