|
a |
|
b/R/getMoCluster.R |
|
|
1 |
#' @name getMoCluster |
|
|
2 |
#' @title Get subtypes from MoCluster |
|
|
3 |
#' @description This function wraps the MoCluster (Multiple omics data integrative clustering) algorithm and provides standard output for `getMoHeatmap()` and `getConsensusMOIC()`. |
|
|
4 |
#' @param data List of matrices. |
|
|
5 |
#' @param N.clust Number of clusters. |
|
|
6 |
#' @param ncomp An integer value to indicate the number of components to calculate. To calculate more components requires longer computational time. |
|
|
7 |
#' @param method A string value can be one of CPCA, GCCA and MCIA; CPCA by default. |
|
|
8 |
#' @param option A string value could be one of c('lambda1', 'inertia', 'uniform') to indicate how the different matrices should be normalized. |
|
|
9 |
#' @param k A numeric value to indicate the absolute number (if k >= 1) or the proportion (if 0 < k < 1) of non-zero coefficients for the variable loading vectors. It could be a single value or a vector has the same length as x so the sparsity of individual matrix could be different. |
|
|
10 |
#' @param center A logical value to indicate if the variables should be centered. TRUE by default. |
|
|
11 |
#' @param scale A logical value to indicate if the variables should be scaled. TRUE by default. |
|
|
12 |
#' @param clusterAlg A string value to indicate the cluster algorithm for distance. |
|
|
13 |
#' @param type Data type corresponding to the list of matrics, which can be gaussian, binomial or possion. |
|
|
14 |
#' @return A list with the following components: |
|
|
15 |
#' |
|
|
16 |
#' \code{fit} an object returned by \link[mogsa]{mbpca}. |
|
|
17 |
#' |
|
|
18 |
#' \code{clust.res} a data.frame storing sample ID and corresponding clusters. |
|
|
19 |
#' |
|
|
20 |
#' \code{feat.res} the results of features selection process. |
|
|
21 |
#' |
|
|
22 |
#' \code{clust.dend} a dendrogram of sample clustering. |
|
|
23 |
#' |
|
|
24 |
#' \code{mo.method} a string value indicating the method used for multi-omics integrative clustering. |
|
|
25 |
#' @export |
|
|
26 |
#' @examples # There is no example and please refer to vignette. |
|
|
27 |
#' @import mogsa |
|
|
28 |
#' @importFrom dplyr %>% |
|
|
29 |
#' @references Meng C, Helm D, Frejno M, Kuster B (2016). moCluster: Identifying Joint Patterns Across Multiple Omics Data Sets. J Proteome Res, 15(3):755-765. |
|
|
30 |
getMoCluster <- function(data = NULL, |
|
|
31 |
N.clust = NULL, |
|
|
32 |
type = rep("gaussian", length(data)), |
|
|
33 |
ncomp = NULL, |
|
|
34 |
method = "CPCA", |
|
|
35 |
option = "lambda1", |
|
|
36 |
k = 10, |
|
|
37 |
center = TRUE, |
|
|
38 |
scale = TRUE, |
|
|
39 |
clusterAlg = "ward.D"){ |
|
|
40 |
|
|
|
41 |
# check data |
|
|
42 |
n_dat <- length(data) |
|
|
43 |
if(n_dat > 6){ |
|
|
44 |
stop('current verision of MOVICS can support up to 6 datasets.') |
|
|
45 |
} |
|
|
46 |
if(n_dat < 2){ |
|
|
47 |
stop('current verision of MOVICS needs at least 2 omics data.') |
|
|
48 |
} |
|
|
49 |
|
|
|
50 |
useless.argument <- type |
|
|
51 |
if(!is.element(method, c("CPCA","GCCA","MCIA"))) { |
|
|
52 |
stop("method should be one of CPCA [consensus PCA], GCCA [generalized canonical correlation analysis], or MCIA [multiple co-inertia analysis]!") |
|
|
53 |
} |
|
|
54 |
|
|
|
55 |
if(is.null(ncomp)) { |
|
|
56 |
ncomp = N.clust |
|
|
57 |
} |
|
|
58 |
|
|
|
59 |
moas <- data %>% mogsa::mbpca(ncomp = ncomp, |
|
|
60 |
k = k, |
|
|
61 |
method = switch(method, |
|
|
62 |
"CPCA" = "globalScore", |
|
|
63 |
"GCCA" = "blockScore", |
|
|
64 |
"MCIA" = "blockLoading"), |
|
|
65 |
option = option, |
|
|
66 |
center = center, |
|
|
67 |
scale = scale, |
|
|
68 |
moa = TRUE, |
|
|
69 |
svd.solver = "fast", |
|
|
70 |
maxiter = 1000, |
|
|
71 |
verbose = FALSE) |
|
|
72 |
|
|
|
73 |
scrs <- moas %>% moaScore |
|
|
74 |
dist <- scrs %>% dist |
|
|
75 |
clust.dend <- hclust(dist, method = clusterAlg) |
|
|
76 |
|
|
|
77 |
clustres <- data.frame(samID = colnames(data[[1]]), |
|
|
78 |
clust = cutree(clust.dend,k = N.clust), |
|
|
79 |
row.names = colnames(data[[1]]), |
|
|
80 |
stringsAsFactors = FALSE) |
|
|
81 |
#clustres <- clustres[order(clustres$clust),] |
|
|
82 |
message("clustering done...") |
|
|
83 |
|
|
|
84 |
|
|
|
85 |
featres <- moas@loading[which(moas@loading[,1] != 0),] |
|
|
86 |
f <- sub('_[^_]*$', '', rownames(featres)) |
|
|
87 |
d <- sub('.*_', '', rownames(featres)) |
|
|
88 |
featres <- data.frame(feature = f, |
|
|
89 |
dataset = d, |
|
|
90 |
load = featres[,1], |
|
|
91 |
stringsAsFactors = FALSE) |
|
|
92 |
feat.res <- NULL |
|
|
93 |
for (d in unique(featres$dataset)) { |
|
|
94 |
tmp <- featres[which(featres$dataset == d),] |
|
|
95 |
feat.res <- rbind.data.frame(feat.res,tmp) |
|
|
96 |
} |
|
|
97 |
message("feature selection done...") |
|
|
98 |
|
|
|
99 |
return(list(fit = moas, clust.res = clustres, feat.res = feat.res, clust.dend = clust.dend, mo.method = "MoCluster")) |
|
|
100 |
} |