|
a |
|
b/R/getLRAcluster.R |
|
|
1 |
#' @name getLRAcluster |
|
|
2 |
#' @title Get subtypes from LRAcluster |
|
|
3 |
#' @description This function wraps the LRAcluster (Integrated cancer omics data anlsysi by low rank approximation) algorithm and provides standard output for `getMoHeatmap()` and `getConsensusMOIC()`. |
|
|
4 |
#' @param data List of matrices. |
|
|
5 |
#' @param N.clust Number of clusters. |
|
|
6 |
#' @param clusterAlg A string value to indicate the cluster algorithm for similarity matrix; 'ward.D' by default. |
|
|
7 |
#' @param type Data type corresponding to the list of matrics, which can be gaussian, binomial or possion; 'gaussian' by default. |
|
|
8 |
#' @return A list with the following components: |
|
|
9 |
#' |
|
|
10 |
#' \code{fit} an object returned by \link[LRAcluster]{LRAcluster}. |
|
|
11 |
#' |
|
|
12 |
#' \code{clust.res} a data.frame storing sample ID and corresponding clusters. |
|
|
13 |
#' |
|
|
14 |
#' \code{clust.dend} a dendrogram of sample clustering. |
|
|
15 |
#' |
|
|
16 |
#' \code{mo.method} a string value indicating the method used for multi-omics integrative clustering. |
|
|
17 |
#' @examples # There is no example and please refer to vignette. |
|
|
18 |
#' @importFrom dplyr %>% |
|
|
19 |
#' @export |
|
|
20 |
#' @references Wu D, Wang D, Zhang MQ, Gu J (2015). Fast dimension reduction and integrative clustering of multi-omics data using low-rank approximation: application to cancer molecular classification. BMC Genomics, 16(1):1022. |
|
|
21 |
getLRAcluster <- function(data = NULL, |
|
|
22 |
N.clust = NULL, |
|
|
23 |
type = rep("gaussian", length(data)), |
|
|
24 |
clusterAlg = "ward.D"){ |
|
|
25 |
|
|
|
26 |
# check data |
|
|
27 |
n_dat <- length(data) |
|
|
28 |
if(n_dat > 6){ |
|
|
29 |
stop('current verision of MOVICS can support up to 6 datasets.') |
|
|
30 |
} |
|
|
31 |
if(n_dat < 2){ |
|
|
32 |
stop('current verision of MOVICS needs at least 2 omics data.') |
|
|
33 |
} |
|
|
34 |
|
|
|
35 |
data <- lapply(data, as.matrix) |
|
|
36 |
|
|
|
37 |
if(is.element("binomial",type)) { |
|
|
38 |
bindex <- which(type == "binomial") |
|
|
39 |
for (i in bindex) { |
|
|
40 |
a <- which(rowSums(data[[i]]) == 0) |
|
|
41 |
b <- which(rowSums(data[[i]]) == ncol(data[[i]])) |
|
|
42 |
if(length(a) > 0) { |
|
|
43 |
data[[i]] <- data[[i]][which(rowSums(data[[i]]) != 0),] # remove all zero |
|
|
44 |
} |
|
|
45 |
|
|
|
46 |
if(length(b) > 0) { |
|
|
47 |
data[[i]] <- data[[i]][which(rowSums(data[[i]]) != ncol(data[[i]])),] # remove all one |
|
|
48 |
} |
|
|
49 |
|
|
|
50 |
if(length(a) + length(b) > 0) { |
|
|
51 |
message(paste0("--", names(data)[i],": a total of ",length(a) + length(b), " features were removed due to the categories were not equal to 2!")) |
|
|
52 |
} |
|
|
53 |
} |
|
|
54 |
type[bindex] <- "binary" |
|
|
55 |
} |
|
|
56 |
|
|
|
57 |
fit <- LRAcluster(data, dimension = N.clust, types = as.list(type)) |
|
|
58 |
dist <- fit$coordinate %>% t %>% dist |
|
|
59 |
clust.dend <- hclust(dist, method = clusterAlg) |
|
|
60 |
|
|
|
61 |
clustres <- data.frame(samID = colnames(data[[1]]), |
|
|
62 |
clust = cutree(clust.dend,k = N.clust), |
|
|
63 |
row.names = colnames(data[[1]]), |
|
|
64 |
stringsAsFactors = FALSE) |
|
|
65 |
#clustres <- clustres[order(clustres$clust),] |
|
|
66 |
|
|
|
67 |
return(list(fit = fit, clust.res = clustres, clust.dend = clust.dend, mo.method = "LRAcluster")) |
|
|
68 |
} |