|
a |
|
b/R/getClustNum.R |
|
|
1 |
#' @name getClustNum |
|
|
2 |
#' @title Get estimation of optimal clustering number |
|
|
3 |
#' @description This function provides two measurements (i.e., clustering prediction index [CPI] and Gap-statistics) and aims to search the optimal number for multi-omics integrative clustering. In short, the peaks reach by the red (CPI) and blue (Gap-statistics) lines should be referred to determine `N.clust`. |
|
|
4 |
#' @param data List of matrices. |
|
|
5 |
#' @param is.binary A logicial vector to indicate if the subdata is binary matrix of 0 and 1 such as mutation. |
|
|
6 |
#' @param try.N.clust A integer vector to indicate possible choices of number of clusters. |
|
|
7 |
#' @param center A logical value to indicate if the variables should be centered. TRUE by default. |
|
|
8 |
#' @param scale A logical value to indicate if the variables should be scaled. FALSE by default. |
|
|
9 |
#' @param fig.path A string value to indicate the output figure path. |
|
|
10 |
#' @param fig.name A string value to indicate the name of the figure. |
|
|
11 |
#' @export |
|
|
12 |
#' @return A figure that helps to choose the optimal clustering number (argument of `N.clust`) for `get%algorithm_name%()` or `getMOIC()`, and a list contains the following components: |
|
|
13 |
#' |
|
|
14 |
#' \code{CPI} possible cluster number identified by clustering prediction index |
|
|
15 |
#' |
|
|
16 |
#' \code{Gapk} possible cluster number identified by Gap-statistics |
|
|
17 |
#' @import IntNMF |
|
|
18 |
#' @import mogsa |
|
|
19 |
#' @import SNFtool |
|
|
20 |
#' @importFrom ggplot2 alpha |
|
|
21 |
#' @importFrom dplyr %>% |
|
|
22 |
#' @importFrom grDevices dev.copy2pdf |
|
|
23 |
#' @examples # There is no example and please refer to vignette. |
|
|
24 |
#' @references Chalise P, Fridley BL (2017). Integrative clustering of multi-level omic data based on non-negative matrix factorization algorithm. PLoS One, 12(5):e0176278. |
|
|
25 |
#' |
|
|
26 |
#'Tibshirani, R., Walther, G., Hastie, T. (2001). Estimating the number of data clusters via the Gap statistic. J R Stat Soc Series B Stat Methodol, 63(2):411-423. |
|
|
27 |
getClustNum <- function(data = NULL, |
|
|
28 |
is.binary = rep(FALSE, length(data)), |
|
|
29 |
try.N.clust = 2:8, |
|
|
30 |
center = TRUE, |
|
|
31 |
scale = TRUE, |
|
|
32 |
fig.path = getwd(), |
|
|
33 |
fig.name = "optimal_number_cluster") { |
|
|
34 |
|
|
|
35 |
# check data |
|
|
36 |
n_dat <- length(data) |
|
|
37 |
if(n_dat > 6){ |
|
|
38 |
stop('current verision of MOVICS can support up to 6 datasets.') |
|
|
39 |
} |
|
|
40 |
if(n_dat < 2){ |
|
|
41 |
stop('current verision of MOVICS needs at least 2 omics data.') |
|
|
42 |
} |
|
|
43 |
|
|
|
44 |
data.backup <- data # save a backup |
|
|
45 |
|
|
|
46 |
#--------------------------------------------# |
|
|
47 |
# Cluster Prediction Index (CPI) from IntNMF # |
|
|
48 |
# remove features that made of categories not equal to 2 otherwise Error in svd(X) : a dimension is zero |
|
|
49 |
if(!all(!is.binary)) { |
|
|
50 |
bindex <- which(is.binary == TRUE) |
|
|
51 |
for (i in bindex) { |
|
|
52 |
a <- which(rowSums(data[[i]]) == 0) |
|
|
53 |
b <- which(rowSums(data[[i]]) == ncol(data[[i]])) |
|
|
54 |
if(length(a) > 0) { |
|
|
55 |
data[[i]] <- data[[i]][which(rowSums(data[[i]]) != 0),] # remove all zero |
|
|
56 |
} |
|
|
57 |
|
|
|
58 |
if(length(b) > 0) { |
|
|
59 |
data[[i]] <- data[[i]][which(rowSums(data[[i]]) != ncol(data[[i]])),] # remove all one |
|
|
60 |
} |
|
|
61 |
|
|
|
62 |
if(length(a) + length(b) > 0) { |
|
|
63 |
message(paste0("--", names(data)[i],": a total of ",length(a) + length(b), " features were removed due to the categories were not equal to 2!")) |
|
|
64 |
} |
|
|
65 |
} |
|
|
66 |
} |
|
|
67 |
|
|
|
68 |
# In order to make the input data fit non-negativity constraint of intNMF, |
|
|
69 |
# the values of the data were shifted to positive direction by adding absolute value of the smallest negative number. |
|
|
70 |
# Further, each data was rescaled by dividing by maximum value of the data to make the magnitudes comparable (between 0 and 1) across the several datasets. |
|
|
71 |
dat <- lapply(data, function (dd){ |
|
|
72 |
if (!all(dd >= 0)) dd <- pmax(dd + abs(min(dd)), 0) + .Machine$double.eps # .Machine$double.eps as The smallest positive floating-point number x |
|
|
73 |
dd <- dd/max(dd) |
|
|
74 |
return(dd %>% as.matrix) |
|
|
75 |
}) |
|
|
76 |
|
|
|
77 |
#dat <- lapply(dat, t) |
|
|
78 |
dat <- lapply(dat, function(x) t(x) + .Machine$double.eps) |
|
|
79 |
|
|
|
80 |
message("calculating Cluster Prediction Index...") |
|
|
81 |
optk1 <- IntNMF::nmf.opt.k(dat = dat, |
|
|
82 |
n.runs = 5, |
|
|
83 |
n.fold = 5, |
|
|
84 |
k.range = try.N.clust, |
|
|
85 |
st.count = 10, |
|
|
86 |
maxiter = 100, |
|
|
87 |
make.plot = FALSE) |
|
|
88 |
optk1 <- as.data.frame(optk1) |
|
|
89 |
|
|
|
90 |
#-------------------------------# |
|
|
91 |
# Gap-statistics from MoCluster # |
|
|
92 |
message("calculating Gap-statistics...") |
|
|
93 |
moas <- data.backup %>% mogsa::mbpca(ncomp = 2, |
|
|
94 |
k = "all", |
|
|
95 |
method = "globalScore", |
|
|
96 |
center = center, |
|
|
97 |
scale = scale, |
|
|
98 |
moa = TRUE, |
|
|
99 |
svd.solver = "fast", |
|
|
100 |
maxiter = 1000, |
|
|
101 |
verbose = FALSE) |
|
|
102 |
gap <- mogsa::moGap(moas, K.max = max(try.N.clust), cluster = "hclust", plot = FALSE) |
|
|
103 |
optk2 <- as.data.frame(gap$Tab)[-1,] # remove k=1 |
|
|
104 |
|
|
|
105 |
#---------------------# |
|
|
106 |
# Eigen-gaps from SNF # |
|
|
107 |
# message("Calculating Eigen-gaps...") |
|
|
108 |
# data <- lapply(data.backup, t) |
|
|
109 |
# dat <- lapply(data, function (dd){ |
|
|
110 |
# dd <- dd %>% as.matrix |
|
|
111 |
# W <- dd %>% SNFtool::dist2(dd) %>% SNFtool::affinityMatrix(K = 30, sigma = 0.5) |
|
|
112 |
# }) |
|
|
113 |
# W <- SNFtool::SNF(Wall = dat, |
|
|
114 |
# K = 30, |
|
|
115 |
# t = 20) |
|
|
116 |
# optk3 <- SNFtool::estimateNumberOfClustersGivenGraph(W, NUMC = try.N.clust) |
|
|
117 |
|
|
|
118 |
# nemo.ag <- nemo.affinity.graph(data.backup, k = 20) |
|
|
119 |
# optk4 <- nemo.num.clusters(nemo.ag, NUMC = try.N.clust) |
|
|
120 |
|
|
|
121 |
#---------------------------# |
|
|
122 |
# calculate optimal N.clust # |
|
|
123 |
# N.clust <- as.numeric(names(which(table(c(as.numeric((which.max(apply(optk1, 1, mean)) + 1)), |
|
|
124 |
# as.numeric((which.max(optk2$gap) + 1)), |
|
|
125 |
# optk3$`Eigen-gap best`)) >= 2))) |
|
|
126 |
|
|
|
127 |
N.clust <- as.numeric(which.max(apply(optk1, 1, mean) + optk2$gap)) + 1 |
|
|
128 |
if(length(N.clust) == 0) { |
|
|
129 |
message("--fail to define the optimal cluster number!") |
|
|
130 |
N.clust <- "null" |
|
|
131 |
} |
|
|
132 |
|
|
|
133 |
#---------------# |
|
|
134 |
# Visualization # |
|
|
135 |
outFig <- paste0(fig.name,".pdf") |
|
|
136 |
par(bty="o", mgp = c(1.9,.33,0), mar=c(3.1,3.1,2.1,3.1)+.1, las=1, tcl=-.25) |
|
|
137 |
plot(NULL, NULL, |
|
|
138 |
xlim = c(min(try.N.clust),max(try.N.clust)), |
|
|
139 |
#ylim = c(min(optk1), max(optk1)), |
|
|
140 |
ylim = c(0,1), |
|
|
141 |
xlab = "Number of Multi-Omics Clusters",ylab = "") |
|
|
142 |
rect(par("usr")[1],par("usr")[3],par("usr")[2],par("usr")[4],col = "#EAE9E9",border = FALSE) |
|
|
143 |
grid(col = "white", lty = 1, lwd = 1.5) |
|
|
144 |
# for (m in 1:n.runs) points(try.N.clust, optk1[, m], pch = 20, cex = 1.5, col = "#224A8D") |
|
|
145 |
points(try.N.clust, apply(optk1, 1, mean), pch = 19, col = ggplot2::alpha("#224A8D"), cex = 1.5) |
|
|
146 |
lines(try.N.clust, apply(optk1, 1, mean), col = "#224A8D", lwd = 2, lty = 4) |
|
|
147 |
mtext("Cluster Prediction Index", side = 2, line = 2, cex = 1.5, col = "#224A8D", las = 3) |
|
|
148 |
|
|
|
149 |
par(new = TRUE, xpd = FALSE) |
|
|
150 |
plot(NULL,NULL, |
|
|
151 |
xlim = c(min(try.N.clust),max(try.N.clust)), |
|
|
152 |
#ylim = c(min(optk2$gap), max(optk2$gap)), |
|
|
153 |
ylim = c(0,1), |
|
|
154 |
xlab = "",ylab = "",xaxt = "n",yaxt = "n") |
|
|
155 |
points(try.N.clust, optk2$gap, pch = 19, col = ggplot2::alpha("#E51718",0.8), cex = 1.5) |
|
|
156 |
lines(try.N.clust, optk2$gap, col = "#E51718", lwd = 2, lty = 4) |
|
|
157 |
#axis(side = 4, at = pretty(range(optk2$gap), n = 6)) |
|
|
158 |
axis(side = 4, at = seq(0,1,0.2), labels = c("0.0","0.2","0.4","0.6","0.8","1.0")) |
|
|
159 |
mtext("Gap-statistics", side = 4, line = 2,las = 3, cex = 1.5, col = "#E51718") |
|
|
160 |
|
|
|
161 |
# abline(v = optk3$`Eigen-gap best`, col = "#008B8A", lwd = 2, lty = 4) |
|
|
162 |
# text(optk3$`Eigen-gap best`, par("usr")[3] + 0.1,"Eigen-gaps", cex = 1.5, col = "#008B8A", adj = -0.05) |
|
|
163 |
invisible(dev.copy2pdf(file = file.path(fig.path, outFig), width = 5.5, height = 5)) |
|
|
164 |
|
|
|
165 |
message("visualization done...") |
|
|
166 |
if(N.clust > 1) { |
|
|
167 |
message(paste0("--the imputed optimal cluster number is ", N.clust, " arbitrarily, but it would be better referring to other priori knowledge.")) |
|
|
168 |
} |
|
|
169 |
#return(list(N.clust = N.clust, CPI = optk1, Gapk = optk2, Eigen = optk3)) |
|
|
170 |
return(list(N.clust = N.clust, CPI = optk1, Gapk = optk2)) |
|
|
171 |
} |