|
a |
|
b/R/getCIMLR.R |
|
|
1 |
#' @name getCIMLR |
|
|
2 |
#' @title Get subtypes from CIMLR |
|
|
3 |
#' @description This function wraps the CIMLR (Cancer Integration via Multikernel Learning) algorithm and provides standard output for `getMoHeatmap()` and `getConsensusMOIC()`. |
|
|
4 |
#' @param data List of matrices. |
|
|
5 |
#' @param N.clust Number of clusters. |
|
|
6 |
#' @param cores.ratio Ratio of the number of cores to be used when computing the multi-kernel. |
|
|
7 |
#' @param verbose A logic value to indicate if supressing progression. |
|
|
8 |
#' @param type Data type corresponding to the list of matrics, which can be gaussian, binomial or possion. |
|
|
9 |
#' @return A list with the following components: |
|
|
10 |
#' |
|
|
11 |
#' \code{fit} an object returned by \link[CIMLR]{CIMLR}. |
|
|
12 |
#' |
|
|
13 |
#' \code{clust.res} a data.frame storing sample ID and corresponding clusters. |
|
|
14 |
#' |
|
|
15 |
#' \code{feat.res} the results of features selection process. |
|
|
16 |
#' |
|
|
17 |
#' \code{mo.method} a string value indicating the method used for multi-omics integrative clustering. |
|
|
18 |
#' @import CIMLR |
|
|
19 |
#' @export |
|
|
20 |
#' @examples # There is no example and please refer to vignette. |
|
|
21 |
#' @references Ramazzotti D, Lal A, Wang B, Batzoglou S, Sidow A (2018). Multi-omic tumor data reveal diversity of molecular mechanisms that correlate with survival. Nat Commun, 9(1):4453. |
|
|
22 |
getCIMLR <- function(data = NULL, |
|
|
23 |
N.clust = NULL, |
|
|
24 |
type = rep("gaussian", length(data)), |
|
|
25 |
cores.ratio = 0, |
|
|
26 |
verbose = TRUE){ |
|
|
27 |
|
|
|
28 |
# check data |
|
|
29 |
n_dat <- length(data) |
|
|
30 |
if(n_dat > 6){ |
|
|
31 |
stop('current verision of MOVICS can support up to 6 datasets.') |
|
|
32 |
} |
|
|
33 |
if(n_dat < 2){ |
|
|
34 |
stop('current verision of MOVICS needs at least 2 omics data.') |
|
|
35 |
} |
|
|
36 |
|
|
|
37 |
useless.argument <- type |
|
|
38 |
if(verbose) { |
|
|
39 |
fit <- quiet(CIMLR(data, |
|
|
40 |
c= N.clust, |
|
|
41 |
cores.ratio = cores.ratio)) |
|
|
42 |
} else { |
|
|
43 |
fit <- CIMLR(data, |
|
|
44 |
c= N.clust, |
|
|
45 |
cores.ratio = cores.ratio) |
|
|
46 |
} |
|
|
47 |
|
|
|
48 |
message("clustering done...") |
|
|
49 |
input_dat <- do.call(rbind,lapply(seq(along = data), function(x){ |
|
|
50 |
ddd <- data[[x]] |
|
|
51 |
rownames(ddd) <- paste(rownames(ddd), names(data)[x], sep = "+") |
|
|
52 |
ddd |
|
|
53 |
})) |
|
|
54 |
|
|
|
55 |
if(verbose) { |
|
|
56 |
ranks <- quiet(CIMLR_Feature_Ranking(A = fit$S, X = input_dat)) |
|
|
57 |
} else { |
|
|
58 |
ranks <- CIMLR_Feature_Ranking(A = fit$S, X = input_dat) |
|
|
59 |
} |
|
|
60 |
ranks$names <- rownames(input_dat)[ranks$aggR] |
|
|
61 |
fit$selectfeatures <- ranks |
|
|
62 |
message("feature selection done...") |
|
|
63 |
|
|
|
64 |
clustres <- data.frame(samID = colnames(data[[1]]), |
|
|
65 |
clust = fit$y$cluster, |
|
|
66 |
row.names = colnames(data[[1]]), |
|
|
67 |
stringsAsFactors = FALSE) |
|
|
68 |
#clustres <- clustres[order(clustres$clust),] |
|
|
69 |
|
|
|
70 |
f <- sapply(strsplit(ranks$name, "+",fixed = TRUE), "[",1) |
|
|
71 |
d <- sapply(strsplit(ranks$name, "+",fixed = TRUE), "[",2) |
|
|
72 |
|
|
|
73 |
featres <- data.frame(feature = f, |
|
|
74 |
dataset = d, |
|
|
75 |
pvalue = ranks$pval, |
|
|
76 |
stringsAsFactors = FALSE) |
|
|
77 |
feat.res <- NULL |
|
|
78 |
for (d in unique(featres$dataset)) { |
|
|
79 |
tmp <- featres[which(featres$dataset == d),] |
|
|
80 |
tmp <- tmp[order(tmp$pvalue, decreasing = FALSE),] |
|
|
81 |
tmp$rank <- 1:nrow(tmp) |
|
|
82 |
feat.res <- rbind.data.frame(feat.res,tmp) |
|
|
83 |
} |
|
|
84 |
|
|
|
85 |
return(list(fit = fit, clust.res = clustres, feat.res = feat.res, mo.method = "CIMLR")) |
|
|
86 |
} |