--- a +++ b/R/compDrugsen.R @@ -0,0 +1,151 @@ +#' @name compDrugsen +#' @title Comparison of drug sensitivity +#' @description This function estimates the IC50 of specific drugs for each Subtype by developing a ridge regression predictive model based on all/specific cell lines derived from Genomics of Drug Sensitivity in Cancer (GDSC, \url{https://www.cancerrxgene.org/}). +#' @param moic.res An object returned by `getMOIC()` with one specified algorithm or `get\%algorithm_name\%` or `getConsensusMOIC()` with a list of multiple algorithms. +#' @param norm.expr A matrix of normalized expression data with rows for genes and columns for samples; FPKM or TPM without log2 transformation is recommended. +#' @param drugs A string vector to indicate the names of the drugs for which you would like to predict sensitivity, one of Erlotinib, Rapamycin, Sunitinib, PHA-665752, MG-132, Paclitaxel, Cyclopamine, AZ628, Sorafenib, VX-680, Imatinib, TAE684, Crizotinib, Saracatinib, S-Trityl-L-cysteine, Z-LLNle-CHO, Dasatinib, GNF-2, CGP-60474, CGP-082996, A-770041, WH-4-023, WZ-1-84, BI-2536, BMS-536924, BMS-509744, CMK, Pyrimethamine, JW-7-52-1, A-443654, GW843682X, MS-275, Parthenolide, KIN001-135, TGX221, Bortezomib, XMD8-85, Roscovitine, Salubrinal, Lapatinib, GSK269962A, Doxorubicin, Etoposide, Gemcitabine, Mitomycin C, Vinorelbine, NSC-87877, Bicalutamide, QS11, CP466722, Midostaurin, CHIR-99021, AP-24534, AZD6482, JNK-9L, PF-562271, HG-6-64-1, JQ1, JQ12, DMOG, FTI-277, OSU-03012, Shikonin, AKT inhibitor VIII, Embelin, FH535, PAC-1, IPA-3, GSK-650394, BAY 61-3606, 5-Fluorouracil, Thapsigargin, Obatoclax Mesylate, BMS-754807, Lisitinib, Bexarotene, Bleomycin, LFM-A13, GW-2580, AUY922, Phenformin, Bryostatin 1, Pazopanib, LAQ824, Epothilone B, GSK1904529A, BMS345541, Tipifarnib, BMS-708163, Ruxolitinib, AS601245, Ispinesib Mesylate, TL-2-105, AT-7519, TAK-715, BX-912, ZSTK474, AS605240, Genentech Cpd 10, GSK1070916, KIN001-102, LY317615, GSK429286A, FMK, QL-XII-47, CAL-101, UNC0638, XL-184, WZ3105, XMD14-99, AC220, CP724714, JW-7-24-1, NPK76-II-72-1, STF-62247, NG-25, TL-1-85, VX-11e, FR-180204, Tubastatin A, Zibotentan, YM155, NSC-207895, VNLG/124, AR-42, CUDC-101, Belinostat, I-BET-762, CAY10603, Linifanib , BIX02189, CH5424802, EKB-569, GSK2126458, KIN001-236, KIN001-244, KIN001-055, KIN001-260, KIN001-266, Masitinib, MP470, MPS-1-IN-1, BHG712, OSI-930, OSI-027, CX-5461, PHA-793887, PI-103, PIK-93, SB52334, TPCA-1, TG101348, Foretinib, Y-39983, YM201636, Tivozanib, GSK690693, SNX-2112, QL-XI-92, XMD13-2, QL-X-138, XMD15-27; two common chemodrugs (i.e., Cisplatin and Paclitaxel) will be analyzed by default if no indication. +#' @param tissueType A string value to specify if you would like to train the models on only a subset of the CGP cell lines (based on the tissue type from which the cell lines originated); Allowed values contain c("all", "aero_digestive_tract", "blood", "bone", "breast", "digestive_system", "lung", "nervous_system", "skin", "urogenital_system") and "all" by default. +#' @param clust.col A string vector storing colors for annotating each Subtype. +#' @param prefix A string value to indicate the prefix of the output plot. +#' @param fig.path A string value to indicate the output path for storing the boxviolin plot. +#' @param seed A integer value to indicate the seed for reproducing ridge regression. +#' @param width A numeric value to indicate the width of boxviolin plot. +#' @param height A numeric value to indicate the height of boxviolin plot. +#' @param test.method A string value to indicate the method for statistical testing. Allowed values contain c('nonparametric', 'parametric'); nonparametric means two-sample wilcoxon rank sum test for two subtypes and Kruskal-Wallis rank sum test for multiple subtypes; parametric means two-sample t-test when only two subtypes are identified, and anova for multiple subtypes comparison; "nonparametric" by default. +#' @return Data.frame(s) storing the estimated IC50 of specified drugs per sample within each Subtype. +#' @export +#' @import ggplot2 +#' @importFrom ggpubr stat_compare_means +#' @references Geeleher P, Cox N, Huang R S. (2014). pRRophetic: an R package for prediction of clinical chemotherapeutic response from tumor gene expression levels. PLoS One, 9(9):e107468. +#' +#' Geeleher P, Cox N J, Huang R S. (2014). Clinical drug response can be predicted using baseline gene expression levels and in vitro drug sensitivity in cell lines. Genome Biol, 15(3):1-12. +#' @examples # There is no example and please refer to vignette. +compDrugsen <- function(moic.res = NULL, + norm.expr = NULL, + drugs = c("Cisplatin", "Paclitaxel"), + tissueType = "all", + test.method = "nonparametric", + clust.col = c("#2EC4B6","#E71D36","#FF9F1C","#BDD5EA","#FFA5AB","#011627","#023E8A","#9D4EDD"), + prefix = NULL, + seed = 123456, + fig.path = getwd(), + width = 5, + height = 5) { + + if(!is.element(test.method, c("nonparametric","parametric"))) { + stop("test.method can be one of nonparametric or parametric.") + } + + # data processing + comsam <- intersect(moic.res$clust.res$samID, colnames(norm.expr)) + # check data + if(length(comsam) == nrow(moic.res$clust.res)) { + message("--all samples matched.") + } else { + message(paste0("--",(nrow(moic.res$clust.res)-length(comsam))," samples mismatched from current subtypes.")) + } + moic.res$clust.res <- moic.res$clust.res[comsam,,drop = FALSE] + norm.expr <- norm.expr[,comsam] + + n.moic <- length(unique(moic.res$clust.res$clust)) + sam.order <- moic.res$clust.res[order(moic.res$clust.res$clust, decreasing = FALSE), "samID"] + colvec <- clust.col[1:length(unique(moic.res$clust.res$clust))] + names(colvec) <- paste0("CS",unique(moic.res$clust.res$clust)) + + annCol <- data.frame("Subtype" = paste0("CS",moic.res$clust.res[sam.order,"clust"]), + samID = sam.order, + row.names = sam.order, + stringsAsFactors = FALSE) + + if(max(norm.expr) < 25 | (max(norm.expr) >= 25 & min(norm.expr) < 0)) { + message("--expression profile seems to have veen standardised (z-score or log transformation), no more action will be performed.") + gset <- norm.expr + } + if(max(norm.expr) >= 25 & min(norm.expr) >= 0){ + message("--log2 transformation done for expression data.") + gset <- log2(norm.expr + 1) + } + + # drug sensitivity prediction + predictedPtype <- predictedBoxdat <- list() + + for (drug in drugs) { + set.seed(seed) + + predictedPtype[[drug]] <- quiet(pRRopheticPredict(testMatrix = as.matrix(gset[,rownames(annCol)]), + drug = drug, + tissueType = tissueType, + dataset = "cgp2016", + minNumSamples = 5, + selection = 1)) # 1 indicate if multiple genes existed, mean value will be considered + + if(!all(names(predictedPtype[[drug]]) == rownames(annCol))) {stop("name mismatched!\n")} + + predictedBoxdat[[drug]] <- data.frame("Est.IC50" = predictedPtype[[drug]], + "Subtype" = as.character(annCol$Subtype), + row.names = names(predictedPtype[[drug]]), + stringsAsFactors = FALSE) + message(drug," done...") + + # generate boxviolin plot with statistical testing + if(n.moic == 2 & test.method == "nonparametric") { + statistic = "wilcox.test" + ic50.test <- wilcox.test(predictedBoxdat[[drug]]$Est.IC50 ~ predictedBoxdat[[drug]]$Subtype)$p.value + cat(paste0("Wilcoxon rank sum test p value = ", formatC(ic50.test, format = "e", digits = 2), " for ", drug)) + } + if(n.moic == 2 & test.method == "parametric") { + statistic = "t.test" + ic50.test <- t.test(predictedBoxdat[[drug]]$Est.IC50 ~ predictedBoxdat[[drug]]$Subtype)$p.value + cat(paste0("Student's t test p value = ", formatC(ic50.test, format = "e", digits = 2), " for ", drug)) + } + if(n.moic > 2 & test.method == "nonparametric") { + statistic = "kruskal.test" + ic50.test <- kruskal.test(predictedBoxdat[[drug]]$Est.IC50 ~ predictedBoxdat[[drug]]$Subtype)$p.value + pairwise.ic50.test <- pairwise.wilcox.test(predictedBoxdat[[drug]]$Est.IC50,predictedBoxdat[[drug]]$Subtype,p.adjust.method = "BH") + cat(paste0(drug,": Kruskal-Wallis rank sum test p value = ", formatC(ic50.test, format = "e", digits = 2),"\npost-hoc pairwise wilcoxon rank sum test with Benjamini-Hochberg adjustment presents below:\n")) + print(formatC(pairwise.ic50.test$p.value, format = "e", digits = 2)) + } + if(n.moic > 2 & test.method == "parametric") { + statistic = "anova" + ic50.test <- summary(aov(predictedBoxdat[[drug]]$Est.IC50 ~ predictedBoxdat[[drug]]$Subtype))[[1]][["Pr(>F)"]][1] + pairwise.ic50.test <- pairwise.t.test(predictedBoxdat[[drug]]$Est.IC50,predictedBoxdat[[drug]]$Subtype,p.adjust.method = "BH") + cat(paste0(drug,": One-way anova test p value = ", formatC(ic50.test, format = "e", digits = 2),"\npost-hoc pairwise Student's t test with Benjamini-Hochberg adjustment presents below:\n")) + print(formatC(pairwise.ic50.test$p.value, format = "e", digits = 2)) + } + + p <- ggplot(data = predictedBoxdat[[drug]], + aes(x = Subtype, y = Est.IC50, fill = Subtype)) + + scale_fill_manual(values = colvec) + + geom_violin(alpha = 0.4, position = position_dodge(width = .75), + size = 0.8, color = "black") + + geom_boxplot(notch = TRUE, outlier.size = -1, + color = "black", lwd = 0.8, alpha = 0.7) + + geom_point(shape = 21, size = 2, + position = position_jitterdodge(), + color = "black", alpha = 1) + + theme_classic() + + ylab(bquote("Estimated IC"[50]~"of"~.(drug))) + xlab("") + + theme(axis.text.x = element_text(angle = 45, hjust = 1, size = 12), + axis.ticks = element_line(size = 0.2, color = "black"), + axis.ticks.length = unit(0.2, "cm"), + legend.position = "none", + axis.title = element_text(size = 15), + axis.text = element_text(size = 10)) + + # add statistical inference + stat_compare_means(method = statistic, + hjust = ifelse(n.moic %% 2 == 0, 0.5, 0), + label.x = ifelse(n.moic %% 2 == 0, n.moic / 2 + 0.5, n.moic / 2), + label.y = min(predictedBoxdat[[drug]]$Est.IC50)) + + # save to pdf + if(is.null(prefix)) { + outFig <- paste0("boxviolin of estimated ic50 for ",drug,".pdf") + } else { + outFig <- paste0(prefix, " for ", drug,".pdf") + } + ggsave(file.path(fig.path, outFig), width = width, height = height) + # print to screen + print(p) + } + return(predictedBoxdat) +}