|
a |
|
b/src/move/data/io.py |
|
|
1 |
__all__ = [ |
|
|
2 |
"dump_names", |
|
|
3 |
"dump_mappings", |
|
|
4 |
"load_mappings", |
|
|
5 |
"load_preprocessed_data", |
|
|
6 |
"read_config", |
|
|
7 |
"read_names", |
|
|
8 |
"read_tsv", |
|
|
9 |
] |
|
|
10 |
|
|
|
11 |
import json |
|
|
12 |
from pathlib import Path |
|
|
13 |
from typing import Optional |
|
|
14 |
|
|
|
15 |
import hydra |
|
|
16 |
import numpy as np |
|
|
17 |
import pandas as pd |
|
|
18 |
from omegaconf import DictConfig |
|
|
19 |
|
|
|
20 |
from move import HYDRA_VERSION_BASE, conf |
|
|
21 |
from move.core.typing import BoolArray, FloatArray, ObjectArray, PathLike |
|
|
22 |
|
|
|
23 |
|
|
|
24 |
def read_config( |
|
|
25 |
data_config_name: Optional[str], task_config_name: Optional[str], *args |
|
|
26 |
) -> DictConfig: |
|
|
27 |
"""Composes configuration for the MOVE framework. |
|
|
28 |
|
|
|
29 |
Args: |
|
|
30 |
data_config_name: Name of data configuration file |
|
|
31 |
task_config_name: Name of task configuration file |
|
|
32 |
*args: Additional overrides |
|
|
33 |
|
|
|
34 |
Returns: |
|
|
35 |
Merged configuration |
|
|
36 |
""" |
|
|
37 |
overrides = [] |
|
|
38 |
if data_config_name is not None: |
|
|
39 |
overrides.append(f"data={data_config_name}") |
|
|
40 |
if task_config_name is not None: |
|
|
41 |
overrides.append(f"task={task_config_name}") |
|
|
42 |
overrides.extend(args) |
|
|
43 |
with hydra.initialize_config_module(conf.__name__, version_base=HYDRA_VERSION_BASE): |
|
|
44 |
return hydra.compose("main", overrides=overrides) |
|
|
45 |
|
|
|
46 |
|
|
|
47 |
def load_categorical_dataset(filepath: PathLike) -> FloatArray: |
|
|
48 |
"""Loads categorical data in a NumPy file. |
|
|
49 |
|
|
|
50 |
Args: |
|
|
51 |
filepath: Path to NumPy file containing a categorical dataset |
|
|
52 |
|
|
|
53 |
Returns: |
|
|
54 |
NumPy array containing categorical data |
|
|
55 |
""" |
|
|
56 |
return np.load(filepath).astype(np.float32) |
|
|
57 |
|
|
|
58 |
|
|
|
59 |
def load_continuous_dataset(filepath: PathLike) -> tuple[FloatArray, BoolArray]: |
|
|
60 |
"""Loads continuous data from a NumPy file and filters out columns |
|
|
61 |
(features) whose sum is zero. Additionally, encodes NaN values as zeros. |
|
|
62 |
|
|
|
63 |
Args: |
|
|
64 |
filepath: Path to NumPy file containing a continuous dataset |
|
|
65 |
|
|
|
66 |
Returns: |
|
|
67 |
Tuple containing (1) the NumPy dataset and (2) a mask marking columns |
|
|
68 |
(i.e., features) that were not filtered out |
|
|
69 |
""" |
|
|
70 |
data = np.load(filepath).astype(np.float32) |
|
|
71 |
data[np.isnan(data)] = 0 |
|
|
72 |
mask_col = np.abs(data).sum(axis=0) != 0 |
|
|
73 |
data = data[:, mask_col] |
|
|
74 |
return data, mask_col |
|
|
75 |
|
|
|
76 |
|
|
|
77 |
def load_preprocessed_data( |
|
|
78 |
path: Path, |
|
|
79 |
categorical_dataset_names: list[str], |
|
|
80 |
continuous_dataset_names: list[str], |
|
|
81 |
) -> tuple[list[FloatArray], list[list[str]], list[FloatArray], list[list[str]]]: |
|
|
82 |
"""Loads the pre-processed categorical and continuous data. |
|
|
83 |
|
|
|
84 |
Args: |
|
|
85 |
path: Where the data is saved |
|
|
86 |
categorical_dataset_names: List of names of the categorical datasets |
|
|
87 |
continuous_dataset_names: List of names of the continuous datasets |
|
|
88 |
|
|
|
89 |
Returns: |
|
|
90 |
Returns two pairs of list containing (1, 3) the pre-processed data and |
|
|
91 |
(2, 4) the lists of names of each feature |
|
|
92 |
""" |
|
|
93 |
|
|
|
94 |
categorical_data, categorical_var_names = [], [] |
|
|
95 |
for dataset_name in categorical_dataset_names: |
|
|
96 |
data = load_categorical_dataset(path / f"{dataset_name}.npy") |
|
|
97 |
categorical_data.append(data) |
|
|
98 |
var_names = read_names(path / f"{dataset_name}.txt") |
|
|
99 |
categorical_var_names.append(var_names) |
|
|
100 |
|
|
|
101 |
continuous_data, continuous_var_names = [], [] |
|
|
102 |
for dataset_name in continuous_dataset_names: |
|
|
103 |
data, keep = load_continuous_dataset(path / f"{dataset_name}.npy") |
|
|
104 |
continuous_data.append(data) |
|
|
105 |
var_names = read_names(path / f"{dataset_name}.txt") |
|
|
106 |
var_names = [name for i, name in enumerate(var_names) if keep[i]] |
|
|
107 |
continuous_var_names.append(var_names) |
|
|
108 |
|
|
|
109 |
return ( |
|
|
110 |
categorical_data, |
|
|
111 |
categorical_var_names, |
|
|
112 |
continuous_data, |
|
|
113 |
continuous_var_names, |
|
|
114 |
) |
|
|
115 |
|
|
|
116 |
|
|
|
117 |
def read_names(path: PathLike) -> list[str]: |
|
|
118 |
"""Reads sample names from a text file. The text file should have one line |
|
|
119 |
per sample name. |
|
|
120 |
|
|
|
121 |
Args: |
|
|
122 |
path: Path to the text file |
|
|
123 |
|
|
|
124 |
Returns: |
|
|
125 |
A list of sample names |
|
|
126 |
""" |
|
|
127 |
with open(path, "r", encoding="utf-8") as file: |
|
|
128 |
return [i.strip() for i in file.readlines()] |
|
|
129 |
|
|
|
130 |
|
|
|
131 |
def read_tsv( |
|
|
132 |
path: PathLike, sample_names: Optional[list[str]] = None |
|
|
133 |
) -> tuple[ObjectArray, np.ndarray]: |
|
|
134 |
"""Read a dataset from a TSV file. The TSV is expected to have an index |
|
|
135 |
column (0th index). |
|
|
136 |
|
|
|
137 |
Args: |
|
|
138 |
path: Path to TSV |
|
|
139 |
index: List of sample names used to sort/filter samples |
|
|
140 |
|
|
|
141 |
Returns: |
|
|
142 |
Tuple containing (1) feature names and (2) 2D matrix (samples x |
|
|
143 |
features) |
|
|
144 |
""" |
|
|
145 |
data = pd.read_csv(path, index_col=0, sep="\t") |
|
|
146 |
if sample_names is not None: |
|
|
147 |
data.index = data.index.astype(str, False) |
|
|
148 |
data = data.loc[sample_names] |
|
|
149 |
return data.columns.values, data.values |
|
|
150 |
|
|
|
151 |
|
|
|
152 |
def load_mappings(path: PathLike) -> dict[str, dict[str, int]]: |
|
|
153 |
with open(path, "r", encoding="utf-8") as file: |
|
|
154 |
return json.load(file) |
|
|
155 |
|
|
|
156 |
|
|
|
157 |
def dump_mappings(path: PathLike, mappings: dict[str, dict[str, int]]) -> None: |
|
|
158 |
with open(path, "w", encoding="utf-8") as file: |
|
|
159 |
json.dump(mappings, file, indent=4, ensure_ascii=False) |
|
|
160 |
|
|
|
161 |
|
|
|
162 |
def dump_names(path: PathLike, names: np.ndarray) -> None: |
|
|
163 |
with open(path, "w", encoding="utf-8") as file: |
|
|
164 |
file.writelines([f"{name}\n" for name in names]) |