Data: Tabular Time Series Specialty: Endocrinology Laboratory: Blood Tests EHR: Demographics Diagnoses Medications Omics: Genomics Multi-omics Transcriptomics Wearable: Activity Clinical Purpose: Treatment Response Assessment Task: Biomarker Discovery
[c23b31]: / .github / workflows / release.yaml

Download this file

113 lines (109 with data), 4.0 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
name: CI
on:
push:
pull_request:
# branches:
# - main
jobs:
format:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- uses: psf/black@stable
lint:
name: Lint with flake8
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- uses: actions/setup-python@v5
with:
python-version: "3.11"
- name: Install flake8
run: pip install flake8 flake8-bugbear
- name: Lint with flake8
run: flake8 src
run-tutorial:
name: Run tutorial - random_small
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- uses: actions/setup-python@v5
with:
python-version: "3.11"
- name: Install dependencies
run: pip install .
- name: Prepare tutorial data
run: |
cd tutorial
move-dl data=random_small task=encode_data --cfg job
move-dl data=random_small task=encode_data
- name: Train model and analyze latent space
run: |
cd tutorial
move-dl data=random_small task=random_small__latent --cfg job
move-dl data=random_small task=random_small__latent
- name: Identify associations - t-test
run: |
cd tutorial
move-dl data=random_small task=random_small__id_assoc_ttest --cfg job
move-dl data=random_small task=random_small__id_assoc_ttest task.training_loop.num_epochs=30 task.num_refits=4
- name: Identify associations - bayes factors
run: |
cd tutorial
move-dl data=random_small task=random_small__id_assoc_bayes --cfg job
move-dl data=random_small task=random_small__id_assoc_bayes task.training_loop.num_epochs=30 task.num_refits=20
run-tutorial-cont:
name: Run tutorial - random_continuous
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- uses: actions/setup-python@v5
with:
python-version: "3.11"
- name: Install dependencies
run: pip install .
- name: Prepare tutorial data
run: |
cd tutorial
move-dl data=random_continuous task=encode_data
- name: Train model and analyze latent space
run: |
cd tutorial
move-dl data=random_continuous task=random_continuous__latent --cfg job
move-dl data=random_continuous task=random_continuous__latent
- name: Identify associations - t-test
run: |
cd tutorial
move-dl data=random_continuous task=random_continuous__id_assoc_ttest --cfg job
move-dl data=random_continuous task=random_continuous__id_assoc_ttest task.training_loop.num_epochs=30 task.num_refits=4
- name: Identify associations - bayes factors
run: |
cd tutorial
move-dl data=random_continuous task=random_continuous__id_assoc_bayes --cfg job
move-dl data=random_continuous task=random_continuous__id_assoc_bayes task.training_loop.num_epochs=30 task.num_refits=4
- name: Identify associations - KS
run: |
cd tutorial
move-dl data=random_continuous task=random_continuous__id_assoc_ks --cfg job
move-dl data=random_continuous task=random_continuous__id_assoc_ks task.training_loop.num_epochs=30 task.num_refits=4
publish:
name: Publish package
runs-on: ubuntu-latest
if: startsWith(github.ref, 'refs/tags')
needs:
- format
- lint
steps:
- uses: actions/checkout@v4
- uses: actions/setup-python@v5
with:
python-version: "3.11"
- name: Install twine and build
run: python -m pip install --upgrade twine build
- name: Build
run: python -m build
- name: Publish package
uses: pypa/gh-action-pypi-publish@release/v1
with:
user: __token__
password: ${{ secrets.PYPI_API_TOKEN }}