[d90d15]: / preprocessing_scr / mapper.py

Download this file

206 lines (181 with data), 9.4 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
from __future__ import print_function
import pandas as pd
import sys,os
import numpy as np
#from scipy.stats import zscore
def expand(df,column,sep="|"):
'''Expand rows containing separator.'''
ndx = 0
expanded_df = {}
for row in df.iterrows():
if type(row[1][column]) == str:
for x in row[1][column].split(sep):
row_ = row[1].copy()
row_[column] = x
expanded_df[ndx] = row_
ndx +=1
else:
expanded_df[ndx] = row[1]
ndx +=1
return pd.DataFrame.from_dict(expanded_df).T
def parse_mapping_table(dataframe, query_id, target_id):
''' Takes the dataframe with gene ids mapping and column names of wuery and target ID.
\nReturns a dictionary with one-to-one, one-to-many, many-to-one mappings and a lsit with unmapped identitfiers (one-to-none). Tested with Homo_sapiens.gene_info from NCBI.'''
mapper = {"one-to-one":{},"one-to-many":{},"many-to-one":{},"one-to-none":[]}
df = dataframe.loc[:,[query_id, target_id]]
# exclude rows of all NAs
df_size = df.shape[0]
df.dropna(how="all",inplace=True)
if df_size - df.shape[0] > 0:
print(df_size - df.shape[0],"rows with both",query_id,"and",target_id,"empty",file=sys.stderr)
else:
print("Ok: no empty rows detected",file=sys.stderr)
# duplicated pairs
df_size = df.shape[0]
df.drop_duplicates(inplace=True)
if df_size - df.shape[0] > 0:
print(df_size - df.shape[0],"duplicated pairs dropped",file=sys.stderr)
else:
print("Ok: no duplicated pairs detected",file=sys.stderr)
# exclude NA query IDs
df_size = df.shape[0]
df.dropna(subset=[query_id],axis=0,inplace = True)
if df_size -df.shape[0] >0:
print(df_size -df.shape[0],"rows with empty",query_id,"were excluded",file=sys.stderr)
else:
print("Ok: All",query_id,"rows are not empty.",file=sys.stderr)
# recognized query ids mapped to no target ids
found_not_mapped = list(set(df.loc[df[target_id].isnull(),query_id].values))
if len(found_not_mapped) > 0:
df = df.loc[~df[query_id].isin(found_not_mapped),:].copy()
print(len(found_not_mapped),query_id,"ids mapped to no",target_id,file= sys.stderr)
else:
print("Ok: All",query_id,"are mapped to",target_id,file= sys.stderr)
# uniqueness of query ids; one-to-many is not acceptable
query_dups = list(set(df.loc[df.duplicated(subset=[query_id],keep = False),:][query_id].values))
if len(query_dups) > 0:
print(len(query_dups),query_id,"mapped to multiple",target_id,file= sys.stderr)
df_one_to_many = df.loc[df[query_id].isin(query_dups),:].copy()
df = df.loc[~df[query_id].isin(query_dups),:].copy()
df_one_to_many = df_one_to_many.groupby(query_id).agg({target_id:list})
mapper["one-to-many"] = df_one_to_many.to_dict()[target_id]
else:
print("Ok: All",query_id,"are unique",file= sys.stderr)
# uniqueness of target ids; many-to-one is ok for synonyms, but not for primary id
query_ambiguous = list(set(df.loc[df.duplicated(subset=[target_id],keep = False),:][query_id].values))
if len(query_ambiguous) > 0:
print(len(query_ambiguous),"different",query_id,
"mapped to the same",target_id,file= sys.stderr)
df_many_to_one = df.loc[df[query_id].isin(query_ambiguous),:].copy()
df = df.loc[~df[query_id].isin(query_ambiguous),:].copy()
df_many_to_one.set_index(query_id,inplace=True,drop=True)
mapper["many-to-one"] = df_many_to_one.to_dict()[target_id]
else:
print("Ok: All",target_id,"are unique",file= sys.stderr)
if len(query_dups) == 0 and len(query_ambiguous) == 0:
print("Ok: One-to-one mapping between",query_id,"and",target_id,file= sys.stderr)
print(df.shape[0],query_id,"can be mapped directly to",target_id,file= sys.stderr)
# one-to-one
df.set_index(query_id,inplace=True,drop=True)
mapper["one-to-one"]=df.to_dict()[target_id]
# query_id without target_id
mapper["one-to-none"]= found_not_mapped
return mapper
def apply_mappers(df, main_mapper, alt_mapper, verbose = True,handle_duplicates = "keep"):
'''Converts IDs in DF indices.\n
handle_duplicates - how to deal with duplicated IDs in the resulted DF:\n
\tsum - group by index and sum\n
\taverage - group by index and keep average\n
\tdrop - drop duplicates\n
\tkeep - do nothing.'''
ID_list = list(df.index.values)
# main mapper, e.g. NCBI symbol -> Entrez Gene ID
symbols_mapped_directly = {}
recognized_not_mapped = [] # found in target IDs of mapper but not
symbol_one2many = [] # not mapped because of ambiguity
symbol_many2one = [] # not mapped because of ambiguity
# Alternative mapper
# applied in case the main mapper failed: e.g. NCBI synonym -> NCBI symbol -> Entrez Gene ID
via_alt_symbol = {}
via_nonuniq_alt_symbol = {}
alt_symbol_one2many = [] #
synonym_match_current_symbol = [] # these synonyms are not used in mapping because they match with ID in main mapped
not_found_at_all =[]
loc = {}
loc_not_found =[]
# store all valid target IDs
valid_target_ids = main_mapper["one-to-one"].values()+ main_mapper["many-to-one"].values() + alt_mapper["one-to-one"].values() + alt_mapper["many-to-one"].values()
for l in main_mapper["one-to-many"].values() +alt_mapper["one-to-many"].values():
valid_target_ids += l
for symbol in ID_list:
if symbol in main_mapper["one-to-one"].keys():
symbols_mapped_directly[symbol] = main_mapper["one-to-one"][symbol]
elif symbol in main_mapper["one-to-none"]:
recognized_not_mapped.append(symbol)
elif symbol in main_mapper["one-to-many"].keys():
symbol_one2many.append(symbol)
elif symbol in main_mapper["many-to-one"].keys():
symbol_many2one.append(symbol)
# alternative mappper
elif symbol in alt_mapper["one-to-one"].keys():
via_alt_symbol[symbol] = alt_mapper["one-to-one"][symbol]
elif symbol in alt_mapper["one-to-many"].keys():
alt_symbol_one2many.append(symbol)
elif symbol in alt_mapper["many-to-one"].keys(): # it is Ok if many synonyms match
via_nonuniq_alt_symbol[symbol] = alt_mapper["many-to-one"][symbol]
elif symbol.startswith("LOC"):
LOC_id = int(symbol[3:])
if LOC_id in valid_target_ids:
loc[symbol] = LOC_id
else:
loc_not_found.append(symbol)
else:
not_found_at_all.append(symbol)
query2target ={}
for symbol in [symbols_mapped_directly,via_alt_symbol,via_nonuniq_alt_symbol,loc]:
query2target.update(symbol)
not_mapped = recognized_not_mapped +symbol_one2many+ alt_symbol_one2many + loc_not_found + not_found_at_all+ symbol_many2one
if verbose:
print("Mapped:",len(query2target.keys()),
"\n\tdirectly via main_mapper",len(symbols_mapped_directly.keys()),
"\n\tvia alternative mapper",len(via_alt_symbol.keys()),
"\n\tvia one of multiple synonyms in alternative mapper",len(via_nonuniq_alt_symbol.keys()),
"\n\tLOC",len(loc.keys()),
"\nUnmapped:",len(not_mapped),
"\n\trecognized symbols without Entrez ID",len(recognized_not_mapped),
"\n\tmultiple query_ids map to the same target_id",len(symbol_many2one),
"\n\tquery_ids map to multiple target_ids in the main mapper",len(symbol_one2many),
"\n\tquery_ids map to multiple target_ids in the alternative mapper",len(alt_symbol_one2many),
"\n\tLOC not found in Entrez",len(loc_not_found),
"\n\tNot found at all:",len( not_found_at_all))
# find duplicated
mapped_symbols = pd.Series(query2target)
dups = mapped_symbols[mapped_symbols.duplicated(keep=False)].index.values
if len(dups) >0:
print("Warning: query IDs mapping to duplicated target IDs in mapping table:", len(dups))
#if verbose:
# print("IDs mapped to multiple target IDs:\n", dups,file=sys.stderr)
# exclude not mapped query IDs and map
df_size_dif = df.shape[0]
df = df.loc[~df.index.isin(not_mapped ),:].copy()
df_size_dif = df_size_dif - df.shape[0]
if df_size_dif > 0:
print("Warning: query IDs not mapped to any target IDs excluded:", df_size_dif)
df.rename(mapper=query2target, axis='index',inplace=True)
# sum genes genes (sum of duplicated Entrez IDs)
if handle_duplicates == "keep":
if verbose:
dups = df.groupby(df.index).size()
dups = list(set(dups[dups>1].index.values))
print("IDs mapped to multiple target IDs are kept:\n", dups, file=sys.stderr)
elif handle_duplicates == "sum":
df = df.groupby(df.index).apply(sum)
elif handle_duplicates == "average":
df = df.groupby(df.index).apply(np.average)
elif handle_duplicates == "drop":
df = df.loc[~dups,:].copy()
else:
print("'handle_duplicates' must be keep, sum, average or drop.", file =sys.stderr)
return None
df.sort_index(inplace=True)
return (df,query2target,not_mapped)