

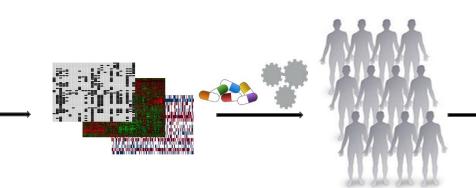
SFU

MOLI: Multi-Omics Late Integration with deep neural networks for drug response prediction

<u>Hossein Sharifi-Noghabi</u>, Olga Zolotareva, Colin C. Collins, and Martin Ester

Simon Fraser University and Vancouver Prostate Centre

- Cannot treat patients with so many drugs
- Clinical trial data are either small or not publicly available



Motivation

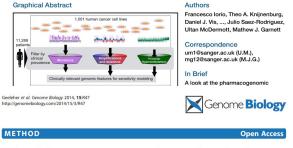
- Gene expression data have been shown to be the best data type for drug response prediction.
- Recent studies suggest that adding other omics data types can improve the prediction performance.
- \rightarrow How to integrate different data types???

Precision Oncology beyond Targeted Therapy: Combining Omics Data with Machine Learning Matches the Majority of Cancer Cells to Effective Therapeutics 12

Michael Q. Ding¹, Lujia Chen¹, Gregory F. Cooper¹, Jonathan D. Young¹, and Xinghua Lu^{1,2}

Cell

A Landscape of Pharmacogenomic Interactions in Cancer



Clinical drug response can be predicted using baseline gene expression levels and *in vitro* drug sensitivity in cell lines

Paul Geeleher¹, Nancy J Cox² and R Stephanie Huang¹

Shrestha et al. Genome Medicine (2019) 11:8 https://doi.org/10.1186/s13073-019-0620-3

Genome Medicine

RESEARCH

Molecular Cancer

Research

Open Access

BAP1 haploinsufficiency predicts a distinct immunogenic class of malignant peritoneal mesothelioma

Raunak Shrestha^{1,2,3}, Noushin Nabavi^{1,51}, Yen-Yi Lin^{1,3}, Fan Mo^{1,67}, Shawn Anderson¹, Stanislav Volik¹, Hans H. Adomat¹, Dong Lin^{1,5}, Hui Xue², Xin Dong⁵, Robert Shukin¹, Robert H. Bell¹, Brian McConeghy¹, Anne Haegert¹, Sonal Brahmbhat¹, Etelle Li¹, Htoo Zami Oo^{1,3}, Antonio Hurtado-Coll¹, Ladan Fazi¹, Joshua Zhou¹, Yarrow McConnell⁴, Andrea McCart⁶, Andrew Lowy⁹, Gregg B. Morin⁵, Tianhui Chen¹⁰, Mads Daugaard^{1,3}, S. Cenk Sahinalp^{1,11}, Faraz Hach^{1,3}, Stephane Le Bihan¹, Martin E. Gleave^{1,3}, Yuzhuo Wang^{1,3,5}, Andrew Churg^{1,2*} and Colin C. Collins^{1,3*}

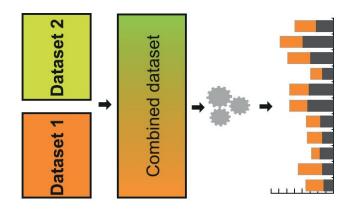
Discovering novel pharmacogenomic biomarkers by imputing drug response in cancer patients from large genomics studies

Paul Geeleher,¹ Zhenyu Zhang,² Fan Wang,¹ Robert F. Gruener,¹ Aritro Nath,¹ Gladys Morrison,¹ Steven Bhutra,¹ Robert L. Grossman,² and R. Stephanie Huang⁰ ¹ Section of Hematology/Oncology, The University of Chicago, Chicago, Illinois 60637, USA,² Center for Data Intensive Science, The University of Chicago, Lilinois 60637, USA

Genomics

Omics integration

Early integration

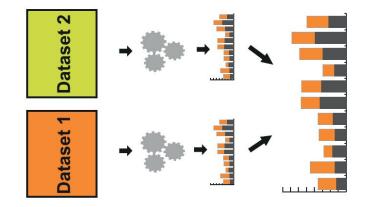


Check for updates

Precision Oncology beyond Targeted Therapy: Combining Omics Data with Machine Learning Matches the Majority of Cancer Cells to Effective Therapeutics 😰

Michael Q, Ding¹, Luija Chen¹, Gregory F, Cooper¹, Jonathan D, Young¹, and Xinghua Lu^{1,2}

Late integration



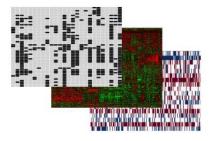
MOLI: Multi-Omics Late Integration with deep neural networks for drug response prediction

Hossein Sharifi-Noghabi 1,3, Olga Zolotareva², Colin C. Collins 3,4,*, and Martin Ester 1,3,*

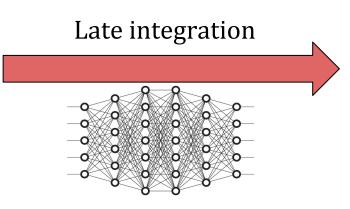
Figures are from Zitnik, et al. 2019 Information Fusion

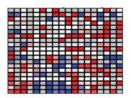
Goal

Given:



Multi-omics data





Drug response (binarized IC50)

Deep Neural Networks

- **Computer vision**
- Natural language processing
- **Robotics**
- Gaming

From:

https://www.technologyreview.com/s/604273/finding-solace-in-

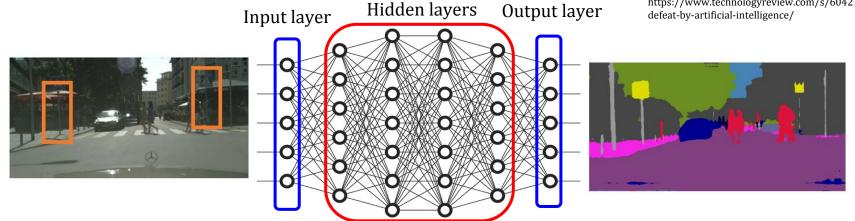
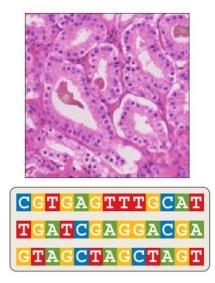
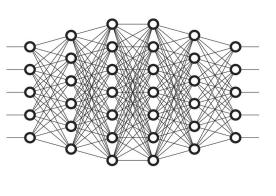


Figure is from Tzeng et al., "Adversarial Discriminative Domain Adaptation" CVPR 2017

REVIEWS

Genomics and medicine





REVIEW ARTICLE | FOCUS

medicine

High-performance medicine: the convergence of human and artificial intelligence

Eric J. Topol 💿

The use of artificial intelligence, and the deep-learning subtype in particular, has been enabled by the use of labeled big data, along with markedly enhanced computing power and cloud storage, across all sectors. In medicine, this is beginning to have an impact at three levels for clinicians, predominantly via rapid, accurate limage interpretation; for health systems, by improving workflow and the potential for reducing medical errors; and for patients, by enabling them to process their own data to promote health. The current limitations, including bias, privacy and security, and lack of transparency, along with the future directions of these applications will be discussed in this article. Over time, marked improvements in accuracy, productivity, and workflow will likely be actualized, but whether that will be used to improve the patient-doctor relationship or facilitate its erosion remains to be seen.

rsif.royalsocietypublishing.org

Opportunities and obstacles for deep learning in biology and medicine

Travers Ching^{1,†}, Daniel S. Himmelstein², Brett K. Beaulieu-Jones³, Alexandr A. Kalinin⁴, Brian T. Do⁵, Gregory P. Way², Enrico Ferrero⁶,

A new era: artificial intelligence and machine learning in prostate cancer

S. Larry Goldenberg 1*, Guy Nir^{1,2} and Septimiu E. Salcudean^{1,2}

Abstract Artificial intelligence (AI) — the ability of a machine to perform cognitive tasks health-care systems. The current availability of ever-increasing computational power, highly developed pattern recognition algorithms and advanced image processing software working at very high speeds has led to the emergence of computer-based systems that are trained to perform complex tasks in bioinformatics, medical imaging and medical robotics. Accessibility to 'big data' enables the 'cognitive' computer to scan billions of bits of unstructured information. extract the relevant information and recognize complex patterns with increasing confidence. Computer-based decision-support systems based on machine learning (ML) have the potential to revolutionize medicine by performing complex tasks that are currently assigned to specialists to improve diagnostic accuracy, increase efficiency of throughputs, improve clinical workflow, decrease human resource costs and improve treatment choices. These characteristics could be especially helpful in the management of prostate cancer, with growing applications in diagnostic imaging, surgical interventions, skills training and assessment, digital pathology and genomics. Medicine must adapt to this changing world, and urologists, oncologists, radiologists and pathologists, as high-volume users of imaging and pathology, need to understand this burgeoning science and acknowledge that the development of highly accurate Al-based

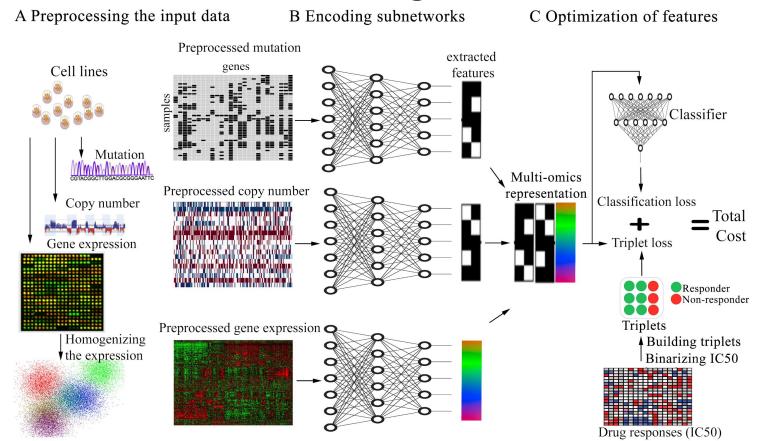
REVIEWS

Deep learning: new computational modelling techniques for genomics

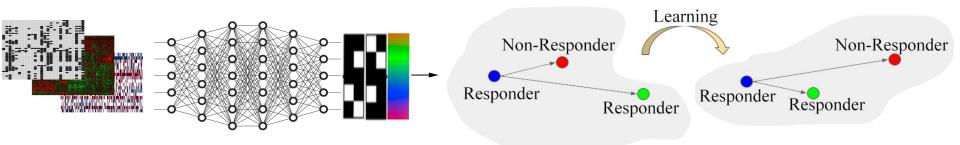
Gökcen Eraslan^{1,2,5}, Žiga Avsec^{3,5}, Julien Gagneur³* and Fabian J. Theis^{1,2,4}*

Abstract I As a data-driven science, genomics largely utilizes machine learning to capture dependencies in data and derive noveb biological hypotheses. However, the ability to extract new insights from the exponentially increasing volume of genomics data requires more expressive machine learning models. By effectively leveraging large data sets, deep learning has transformed fields such as computer vision and natural language processing. Now, it is becoming the method of choice for many genomics modelling tasks, including predicting the impact of genetic variation on gene regulatory mechanisms such as DNA accessibility and splicing.

MOLI: Multi-Omics Late Integration



MOLI: Triplet Loss function



 $d(f_{Anchor}, f_{Positive}) \leq d(f_{Anchor}, f_{Negative}),$

$$d(f_{Anchor}, f_{Positive}) - d(f_{Anchor}, f_{Negative}) \le 0$$
,

$$d(f_{Anchor}, f_{Positive}) - d(f_{Anchor}, f_{Negative}) + \xi \le 0$$
,

$$L_{Triplet}^{i} = max[d(f_{Anchor}^{i}, f_{Positive}^{i}) - d(f_{Anchor}^{i}, f_{Negative}^{i}) + \xi, 0],$$

FaceNet: A Unified Embedding for Face Recognition and Clustering

Florian Schroff fschroff@google.com Google Inc. Dmitry Kalenichenko dkalenichenko@google.com Google Inc.

James Philbin jphilbin@google.com Google Inc.

Abstract Despite significant recent advances in the field of face

$$L_{Triplet} = \sum_{i=1}^{I} L_{Triplet}^{i}.$$

T

9

Questions

- 1. Does MOLI outperform single-omics and early integration methods in terms of prediction AUROC?
- 2. Does MOLI's performance improve by including more drugs in its training data?
- 3. Does the response predicted by MOLI have associations with the target of a drug (for the targeted drugs)?

Baselines

- Early integration
 - Deep neural networks (Ding et al. 2018)
 - Non-negative matrix factorization
- Single-omics (gene expression)
 - Regression-based (Geeleher et al. 2014)
 - Feed forward neural network

Genomics

Precision Oncology beyond Targeted Therapy: Combining Omics Data with Machine Learning Matches the Majority of Cancer Cells to Effective Therapeutics 12

Molecula

Cancer Research

Michael Q. Ding¹, Lujia Chen¹, Gregory F. Cooper¹, Jonathan D. Young¹, and Xinghua Lu^{1,2}

Geeleher et al. Genome Biology 2014, 15:R47 http://genomebiology.com/2014/15/3/R47

METHOD

Open Access

Clinical drug response can be predicted using baseline gene expression levels and *in vitro* drug sensitivity in cell lines

Paul Geeleher¹, Nancy J Cox² and R Stephanie Huang¹

Datasets

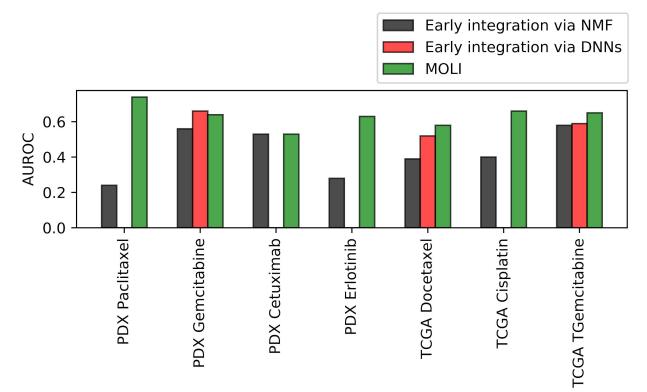
We use three main resources:

- Before treatment genomic data and after treatment response data
- Cell line data for training
 - ~1000 cell lines with multi-omics data screened with 265 drugs (Iorio et al., 2016 Cell)
- Pre-clinical data for external validation
 - ~400 PDX models with multi-omics data screened with 34 drugs (Gao et al., 2015 Nature Medicine)
- Clinical data for external validation
 - TCGA patients with the drug response available in their records

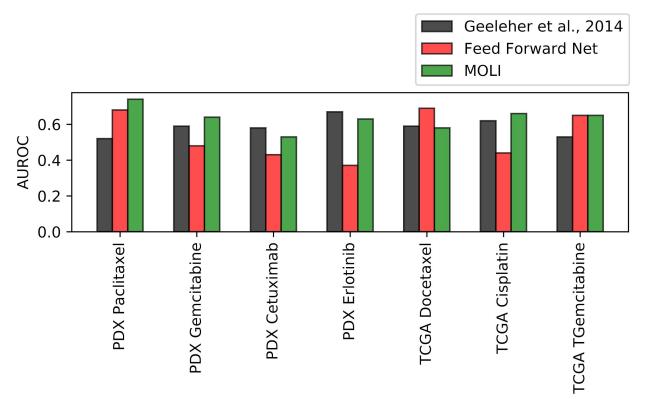
List of drugs:

- Paclitaxel
- Gemcitabine
- Erlotinib
- Cetuximab
- Cisplatin
- Docetaxel

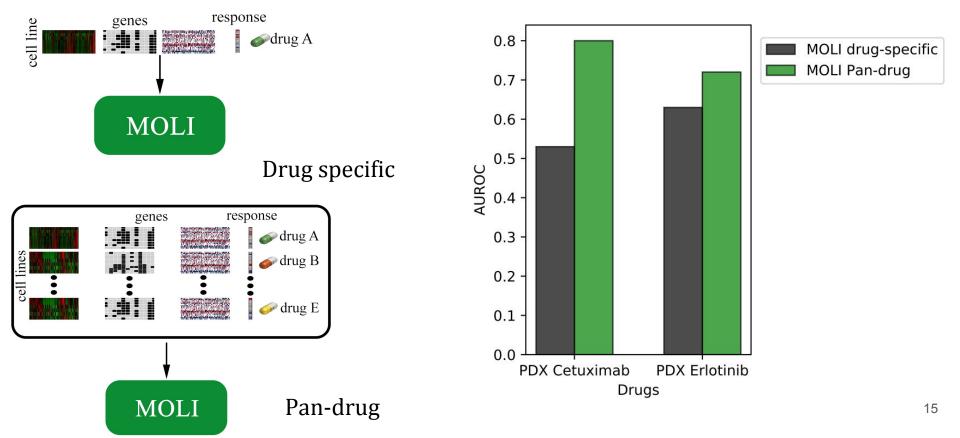
MOLI outperforms early integration baselines



MOLI outperforms single-omics baselines

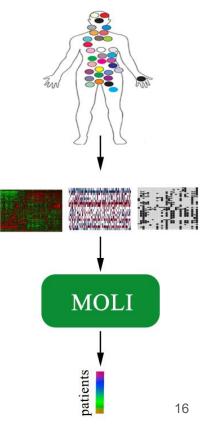


Pan-drug training data outperforms drug-specific



Predict response for TCGA patients with no treatment

- **Step 1**: Apply the trained MOLI to TCGA cohorts separately and get the predicted responses
- **Step 2**: Select EGFR genes from REACTOME
- **Step 3**: Fit a multiple linear regression to the level of the expressions of the EGFR genes and the responses predicted by MOLI
- We found significant associations in:
 - Prostate cancer
 - Kidney cancer
 - Breast cancer
 - Lung cancer (treatment for 70% of the patients in US, Li et al., 2019 Plos one)



Summary

- Proposed the first method for multi-omics late integration with deep neural networks
- Employed triplet loss function in multi-omics late integration for drug response prediction
- Introduced pan-drug training data based on transfer learning for the targeted drugs
- Obtained better performance compared to the state-of-the-art methods

Github: https://github.com/hosseinshn/MOLI

Future direction

- Domain adaptation between cell lines, PDX, and patients data
- Incorporating domain expert/biological knowledge

CAMDA Thursday, July 25th

MLSCB Wednesday, July 24th

12:20 PM-12:40 PM	Proceedings Presentation: PRECISE: A domain adapta transfer predictors of drug response from pre-clinica tumors		DrugCell: A visible neural network to guide precision medicine		
	Soufiane Mourragui, Delft University of Technology and the Nether Netherlands Marco Loog, TU Delft and University of Copenhagen, Netherlands Mark van de Wiel, VUmc Amsterdam, Netherlands Marcel Reinders, TU Delft and Leiden University Medical Center, Net Lodewyk Wessels, The Netherlands Cancer Institute, Netherlands		Samson Fong, University of California San Diego, United States Trey Ideker, Department of Medicine, University of California, San Diego, United States Brent Kuenzi, University of California San Diego, United States Jisoo Park, University of California San Diego, United States Jason Kreisberg, University of California San Diego, United States Presentation Overview: Show		
	Presentation Overview: Show	Tutorial PM5: Biomarker discovery and datasets	machine learning in large pharmacogenomics		
	PharmacoDB	Room: Kairo 1/2 (Ground Floor)	Sunday, July 21, 2:00 pm - 6:00 pm		
		Presenters			

Arvind Singh Mer, Princess Margaret Cancer Center, University of Toronto, Canada Zhaleh Safikhani, Princess Margaret Cancer Center, University of Toronto, Canada Petr Smirnov, Princess Margaret Cancer Center, Vector Institute, University of Toronto, Canada Benjamin Haibe-Kains, Princess Margaret Cancer Center, Vector Institute, Ontario Institute for Cancer Research, University of Toronto, Canada

We are hiring!

Our lab at SFU is looking for highly motivated and curious postdocs interested in method development for different biological problems!

Please contact Prof. Martin Ester:

Email: ester@sfu.ca

Acknowledgement

Dr. Ester's lab (SFU) **Martin Ester** Sahand Khakabi Mehrdad Mansouri Raquel Aoki **Oliver Snow** Shuman Peng Qingyuan Feng Ali Arab Jialin Lu

<u>University of Bielefeld</u> Olga Zolotareva

Universität Bielefeld

Dr. Collin's lab (VPC-UBC) **Colin C. Collins** Stephane Le Bihan Stanislav Volik Yen-Yi Lin **Raunak Shrestha** Shawn Anderson Anne Haegert **Robert Bell**

<u>Dr. Hach's lab (VPC-UBC)</u> Hossein Asghari Baraa Orabi

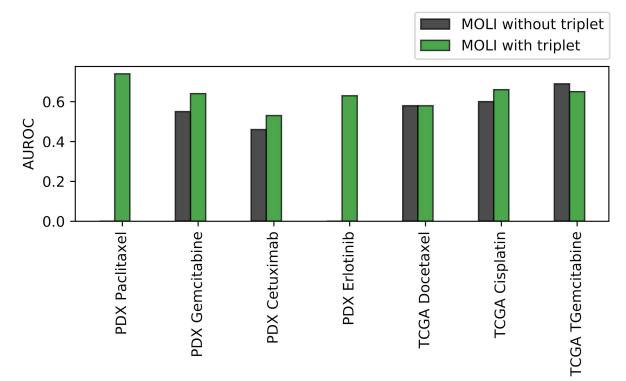
SFU

ENGAGING THE WORLD

PROSTATE CENTRE A UBC & VGH Centre of Excellence

VANCOUVER

Triplet loss performance



Precision-Recall

Method/Drug	PDX-Paclitaxel	PDX-Gemcitabine	PDX-Cetuximab	PDX-Erlotinib	TCGA-Docetaxel	TCGA-Cisplatin	TCGA-Gemcitabine
Random classifier P/(P+N)	0.12	0.28	0.08	0.14	0.5	0.91	0.37
Geeleher et al. 2014	0.1	0.28	0.06	0.11	0.51	0.85	0.38
Early Integration via NMF	0.21	0.35	0.07	0.28	0.51	0.93	0.37
Early Integration via DNNs	NSC	0.35	NSC	NSC	0.45	NSC	0.46
MOLI complete	0.24	0.49	0.11	0.33	0.49	0.93	0.45
MOLI pan-drug	NA	NA	0.2	0.28	NA	NA	NA

P: number of positive cases; N: number of negative cases; NMF: non-negative matrix factorization; DNNs: Deep Neural Networks