|
a |
|
b/EGFR/EGFRv8.ipynb |
|
|
1 |
{ |
|
|
2 |
"cells": [ |
|
|
3 |
{ |
|
|
4 |
"cell_type": "code", |
|
|
5 |
"execution_count": 21, |
|
|
6 |
"metadata": {}, |
|
|
7 |
"outputs": [], |
|
|
8 |
"source": [ |
|
|
9 |
"import torch \n", |
|
|
10 |
"import torch.nn as nn\n", |
|
|
11 |
"import torch.nn.functional as F\n", |
|
|
12 |
"import torch.optim as optim\n", |
|
|
13 |
"import numpy as np\n", |
|
|
14 |
"import matplotlib.pyplot as plt\n", |
|
|
15 |
"import pandas as pd\n", |
|
|
16 |
"import math\n", |
|
|
17 |
"import sklearn.preprocessing as sk\n", |
|
|
18 |
"import seaborn as sns\n", |
|
|
19 |
"from sklearn import metrics\n", |
|
|
20 |
"from sklearn.feature_selection import VarianceThreshold\n", |
|
|
21 |
"from sklearn.model_selection import train_test_split\n", |
|
|
22 |
"from utils import AllTripletSelector,HardestNegativeTripletSelector, RandomNegativeTripletSelector, SemihardNegativeTripletSelector # Strategies for selecting triplets within a minibatch\n", |
|
|
23 |
"from metrics import AverageNonzeroTripletsMetric\n", |
|
|
24 |
"from torch.utils.data.sampler import WeightedRandomSampler\n", |
|
|
25 |
"from sklearn.metrics import roc_auc_score\n", |
|
|
26 |
"from sklearn.metrics import average_precision_score\n", |
|
|
27 |
"import random\n", |
|
|
28 |
"from random import randint\n", |
|
|
29 |
"from sklearn.model_selection import StratifiedKFold\n", |
|
|
30 |
"\n", |
|
|
31 |
"save_results_to = '/home/hnoghabi/EGFR/'\n", |
|
|
32 |
"torch.manual_seed(42)\n", |
|
|
33 |
"random.seed(42)\n", |
|
|
34 |
"\n", |
|
|
35 |
"GDSCE = pd.read_csv(\"GDSC_exprs.z.EGFRi.tsv\", \n", |
|
|
36 |
" sep = \"\\t\", index_col=0, decimal = \",\")\n", |
|
|
37 |
"GDSCE = pd.DataFrame.transpose(GDSCE)\n", |
|
|
38 |
"\n", |
|
|
39 |
"GDSCM = pd.read_csv(\"GDSC_mutations.EGFRi.tsv\", \n", |
|
|
40 |
" sep = \"\\t\", index_col=0, decimal = \".\")\n", |
|
|
41 |
"GDSCM = pd.DataFrame.transpose(GDSCM)\n", |
|
|
42 |
"GDSCM = GDSCM.loc[:,~GDSCM.columns.duplicated()]\n", |
|
|
43 |
"\n", |
|
|
44 |
"GDSCC = pd.read_csv(\"GDSC_CNA.EGFRi.tsv\", \n", |
|
|
45 |
" sep = \"\\t\", index_col=0, decimal = \".\")\n", |
|
|
46 |
"GDSCC.drop_duplicates(keep='last')\n", |
|
|
47 |
"GDSCC = pd.DataFrame.transpose(GDSCC)\n", |
|
|
48 |
"GDSCC = GDSCC.loc[:,~GDSCC.columns.duplicated()]\n", |
|
|
49 |
"\n", |
|
|
50 |
"PDXEerlo = pd.read_csv(\"PDX_exprs.Erlotinib.eb_with.GDSC_exprs.Erlotinib.tsv\", \n", |
|
|
51 |
" sep = \"\\t\", index_col=0, decimal = \",\")\n", |
|
|
52 |
"PDXEerlo = pd.DataFrame.transpose(PDXEerlo)\n", |
|
|
53 |
"# PDXMerlo = pd.read_csv(\"PDX_mutations.Erlotinib.tsv\", \n", |
|
|
54 |
"# sep = \"\\t\", index_col=0, decimal = \".\")\n", |
|
|
55 |
"PDXMerlo = pd.read_csv(\"PDX_mutations.Erlotinib - Copy.tsv\", \n", |
|
|
56 |
" sep = \"\\t\", index_col=0, decimal = \",\")\n", |
|
|
57 |
"PDXMerlo = pd.DataFrame.transpose(PDXMerlo)\n", |
|
|
58 |
"# PDXCerlo = pd.read_csv(\"PDX_CNA.Erlotinib.tsv\", \n", |
|
|
59 |
"# sep = \"\\t\", index_col=0, decimal = \".\")\n", |
|
|
60 |
"PDXCerlo = pd.read_csv(\"PDX_CNV.Erlotinib.tsv\", \n", |
|
|
61 |
" sep = \"\\t\", index_col=0, decimal = \",\")\n", |
|
|
62 |
"PDXCerlo.drop_duplicates(keep='last')\n", |
|
|
63 |
"PDXCerlo = pd.DataFrame.transpose(PDXCerlo)\n", |
|
|
64 |
"PDXCerlo = PDXCerlo.loc[:,~PDXCerlo.columns.duplicated()]\n", |
|
|
65 |
"\n", |
|
|
66 |
"PDXEcet = pd.read_csv(\"PDX_exprs.Cetuximab.eb_with.GDSC_exprs.Cetuximab.tsv\", \n", |
|
|
67 |
" sep = \"\\t\", index_col=0, decimal = \",\")\n", |
|
|
68 |
"PDXEcet = pd.DataFrame.transpose(PDXEcet)\n", |
|
|
69 |
"# PDXMcet = pd.read_csv(\"PDX_mutations.Cetuximab.tsv\", \n", |
|
|
70 |
"# sep = \"\\t\", index_col=0, decimal = \".\")\n", |
|
|
71 |
"PDXMcet = pd.read_csv(\"PDX_mutations.Cetuximab - Copy.tsv\", \n", |
|
|
72 |
" sep = \"\\t\", index_col=0, decimal = \",\")\n", |
|
|
73 |
"PDXMcet = pd.DataFrame.transpose(PDXMcet)\n", |
|
|
74 |
"# PDXCcet = pd.read_csv(\"PDX_CNA.Cetuximab.tsv\", \n", |
|
|
75 |
"# sep = \"\\t\", index_col=0, decimal = \".\")\n", |
|
|
76 |
"PDXCcet = pd.read_csv(\"PDX_CNV.Cetuximab.tsv\", \n", |
|
|
77 |
" sep = \"\\t\", index_col=0, decimal = \",\")\n", |
|
|
78 |
"PDXCcet.drop_duplicates(keep='last')\n", |
|
|
79 |
"PDXCcet = pd.DataFrame.transpose(PDXCcet)\n", |
|
|
80 |
"PDXCcet = PDXCcet.loc[:,~PDXCcet.columns.duplicated()]\n", |
|
|
81 |
"\n", |
|
|
82 |
"selector = VarianceThreshold(0.05)\n", |
|
|
83 |
"selector.fit_transform(GDSCE)\n", |
|
|
84 |
"GDSCE = GDSCE[GDSCE.columns[selector.get_support(indices=True)]]\n", |
|
|
85 |
"\n", |
|
|
86 |
"GDSCM = GDSCM.fillna(0)\n", |
|
|
87 |
"GDSCM[GDSCM != 0.0] = 1\n", |
|
|
88 |
"GDSCC = GDSCC.fillna(0)\n", |
|
|
89 |
"GDSCC[GDSCC != 0.0] = 1\n", |
|
|
90 |
"\n", |
|
|
91 |
"ls = GDSCE.columns.intersection(GDSCM.columns)\n", |
|
|
92 |
"ls = ls.intersection(GDSCC.columns)\n", |
|
|
93 |
"ls = ls.intersection(PDXEerlo.columns)\n", |
|
|
94 |
"ls = ls.intersection(PDXMerlo.columns)\n", |
|
|
95 |
"ls = ls.intersection(PDXCerlo.columns)\n", |
|
|
96 |
"ls = ls.intersection(PDXEcet.columns)\n", |
|
|
97 |
"ls = ls.intersection(PDXMcet.columns)\n", |
|
|
98 |
"ls = ls.intersection(PDXCcet.columns)\n", |
|
|
99 |
"ls2 = GDSCE.index.intersection(GDSCM.index)\n", |
|
|
100 |
"ls2 = ls2.intersection(GDSCC.index)\n", |
|
|
101 |
"ls3 = PDXEerlo.index.intersection(PDXMerlo.index)\n", |
|
|
102 |
"ls3 = ls3.intersection(PDXCerlo.index)\n", |
|
|
103 |
"ls4 = PDXEcet.index.intersection(PDXMcet.index)\n", |
|
|
104 |
"ls4 = ls4.intersection(PDXCcet.index)\n", |
|
|
105 |
"ls = pd.unique(ls)\n", |
|
|
106 |
"\n", |
|
|
107 |
"PDXEerlo = PDXEerlo.loc[ls3,ls]\n", |
|
|
108 |
"PDXMerlo = PDXMerlo.loc[ls3,ls]\n", |
|
|
109 |
"PDXCerlo = PDXCerlo.loc[ls3,ls]\n", |
|
|
110 |
"PDXEcet = PDXEcet.loc[ls4,ls]\n", |
|
|
111 |
"PDXMcet = PDXMcet.loc[ls4,ls]\n", |
|
|
112 |
"PDXCcet = PDXCcet.loc[ls4,ls]\n", |
|
|
113 |
"GDSCE = GDSCE.loc[:,ls]\n", |
|
|
114 |
"GDSCM = GDSCM.loc[:,ls]\n", |
|
|
115 |
"GDSCC = GDSCC.loc[:,ls]\n", |
|
|
116 |
"\n", |
|
|
117 |
"GDSCR = pd.read_csv(\"GDSC_response.EGFRi.tsv\", \n", |
|
|
118 |
" sep = \"\\t\", index_col=0, decimal = \",\")\n", |
|
|
119 |
"\n", |
|
|
120 |
"GDSCR.rename(mapper = str, axis = 'index', inplace = True)\n", |
|
|
121 |
"\n", |
|
|
122 |
"d = {\"R\":0,\"S\":1}\n", |
|
|
123 |
"GDSCR[\"response\"] = GDSCR.loc[:,\"response\"].apply(lambda x: d[x])\n", |
|
|
124 |
"\n", |
|
|
125 |
"responses = GDSCR\n", |
|
|
126 |
"drugs = set(responses[\"drug\"].values)\n", |
|
|
127 |
"exprs_z = GDSCE\n", |
|
|
128 |
"cna = GDSCC\n", |
|
|
129 |
"mut = GDSCM\n", |
|
|
130 |
"expression_zscores = []\n", |
|
|
131 |
"CNA=[]\n", |
|
|
132 |
"mutations = []\n", |
|
|
133 |
"for drug in drugs:\n", |
|
|
134 |
" samples = responses.loc[responses[\"drug\"]==drug,:].index.values\n", |
|
|
135 |
" e_z = exprs_z.loc[samples,:]\n", |
|
|
136 |
" c = cna.loc[samples,:]\n", |
|
|
137 |
" m = mut.loc[samples,:]\n", |
|
|
138 |
" m = mut.loc[samples,:]\n", |
|
|
139 |
" # next 3 rows if you want non-unique sample names\n", |
|
|
140 |
" e_z.rename(lambda x : str(x)+\"_\"+drug, axis = \"index\", inplace=True)\n", |
|
|
141 |
" c.rename(lambda x : str(x)+\"_\"+drug, axis = \"index\", inplace=True)\n", |
|
|
142 |
" m.rename(lambda x : str(x)+\"_\"+drug, axis = \"index\", inplace=True)\n", |
|
|
143 |
" expression_zscores.append(e_z)\n", |
|
|
144 |
" CNA.append(c)\n", |
|
|
145 |
" mutations.append(m)\n", |
|
|
146 |
"responses.index = responses.index.values +\"_\"+responses[\"drug\"].values\n", |
|
|
147 |
"GDSCEv2 = pd.concat(expression_zscores, axis =0 )\n", |
|
|
148 |
"GDSCCv2 = pd.concat(CNA, axis =0 )\n", |
|
|
149 |
"GDSCMv2 = pd.concat(mutations, axis =0 )\n", |
|
|
150 |
"GDSCRv2 = responses\n", |
|
|
151 |
"\n", |
|
|
152 |
"ls2 = GDSCEv2.index.intersection(GDSCMv2.index)\n", |
|
|
153 |
"ls2 = ls2.intersection(GDSCCv2.index)\n", |
|
|
154 |
"GDSCEv2 = GDSCEv2.loc[ls2,:]\n", |
|
|
155 |
"GDSCMv2 = GDSCMv2.loc[ls2,:]\n", |
|
|
156 |
"GDSCCv2 = GDSCCv2.loc[ls2,:]\n", |
|
|
157 |
"GDSCRv2 = GDSCRv2.loc[ls2,:]\n", |
|
|
158 |
"\n", |
|
|
159 |
"Y = GDSCRv2['response'].values\n", |
|
|
160 |
"\n", |
|
|
161 |
"PDXRcet = pd.read_csv(\"PDX_response.Cetuximab.tsv\", \n", |
|
|
162 |
" sep = \"\\t\", index_col=0, decimal = \",\")\n", |
|
|
163 |
"PDXRcet.loc[PDXRcet.iloc[:,1] == 'R'] = 0\n", |
|
|
164 |
"PDXRcet.loc[PDXRcet.iloc[:,1] == 'S'] = 1\n", |
|
|
165 |
"PDXRcet = PDXRcet.loc[ls4,:]\n", |
|
|
166 |
"Ytscet = PDXRcet['response'].values \n", |
|
|
167 |
"\n", |
|
|
168 |
"PDXRerlo = pd.read_csv(\"PDX_response.Erlotinib.tsv\", \n", |
|
|
169 |
" sep = \"\\t\", index_col=0, decimal = \",\")\n", |
|
|
170 |
"PDXRerlo.loc[PDXRerlo.iloc[:,1] == 'R'] = 0\n", |
|
|
171 |
"PDXRerlo.loc[PDXRerlo.iloc[:,1] == 'S'] = 1\n", |
|
|
172 |
"PDXRerlo = PDXRerlo.loc[ls3,:]\n", |
|
|
173 |
"Ytserlo = PDXRerlo['response'].values \n", |
|
|
174 |
"\n", |
|
|
175 |
"hdm1 = 32\n", |
|
|
176 |
"hdm2 = 16\n", |
|
|
177 |
"hdm3 = 256\n", |
|
|
178 |
"rate1 = 0.5\n", |
|
|
179 |
"rate2 = 0.8\n", |
|
|
180 |
"rate3 = 0.5\n", |
|
|
181 |
"rate4 = 0.3\n", |
|
|
182 |
"\n" |
|
|
183 |
] |
|
|
184 |
}, |
|
|
185 |
{ |
|
|
186 |
"cell_type": "code", |
|
|
187 |
"execution_count": null, |
|
|
188 |
"metadata": {}, |
|
|
189 |
"outputs": [], |
|
|
190 |
"source": [] |
|
|
191 |
}, |
|
|
192 |
{ |
|
|
193 |
"cell_type": "code", |
|
|
194 |
"execution_count": 22, |
|
|
195 |
"metadata": {}, |
|
|
196 |
"outputs": [ |
|
|
197 |
{ |
|
|
198 |
"name": "stderr", |
|
|
199 |
"output_type": "stream", |
|
|
200 |
"text": [ |
|
|
201 |
"/home/hnoghabi/anaconda3/lib/python3.6/site-packages/sklearn/utils/validation.py:475: DataConversionWarning: Data with input dtype object was converted to float64 by StandardScaler.\n", |
|
|
202 |
" warnings.warn(msg, DataConversionWarning)\n" |
|
|
203 |
] |
|
|
204 |
}, |
|
|
205 |
{ |
|
|
206 |
"name": "stdout", |
|
|
207 |
"output_type": "stream", |
|
|
208 |
"text": [ |
|
|
209 |
"0.9440556750399118\n", |
|
|
210 |
"0.7222222222222222\n", |
|
|
211 |
"0.8\n" |
|
|
212 |
] |
|
|
213 |
} |
|
|
214 |
], |
|
|
215 |
"source": [ |
|
|
216 |
"scalerGDSC = sk.StandardScaler()\n", |
|
|
217 |
"scalerGDSC.fit(GDSCEv2.values)\n", |
|
|
218 |
"X_trainE = scalerGDSC.transform(GDSCEv2.values)\n", |
|
|
219 |
"X_testEerlo = scalerGDSC.transform(PDXEerlo.values) \n", |
|
|
220 |
"X_testEcet = scalerGDSC.transform(PDXEcet.values) \n", |
|
|
221 |
"\n", |
|
|
222 |
"X_trainM = np.nan_to_num(GDSCMv2.values)\n", |
|
|
223 |
"X_trainC = np.nan_to_num(GDSCCv2.values)\n", |
|
|
224 |
"X_testMerlo = np.nan_to_num(PDXMerlo.values)\n", |
|
|
225 |
"X_testCerlo = np.nan_to_num(PDXCerlo.values)\n", |
|
|
226 |
"X_testMcet = np.nan_to_num(PDXMcet.values)\n", |
|
|
227 |
"X_testCcet = np.nan_to_num(PDXCcet.values)\n", |
|
|
228 |
"\n", |
|
|
229 |
"TX_testEerlo = torch.FloatTensor(X_testEerlo)\n", |
|
|
230 |
"TX_testMerlo = torch.FloatTensor(X_testMerlo)\n", |
|
|
231 |
"TX_testCerlo = torch.FloatTensor(X_testCerlo)\n", |
|
|
232 |
"ty_testEerlo = torch.FloatTensor(Ytserlo.astype(int))\n", |
|
|
233 |
"\n", |
|
|
234 |
"TX_testEcet = torch.FloatTensor(X_testEcet)\n", |
|
|
235 |
"TX_testMcet = torch.FloatTensor(X_testMcet)\n", |
|
|
236 |
"TX_testCcet = torch.FloatTensor(X_testCcet)\n", |
|
|
237 |
"ty_testEcet = torch.FloatTensor(Ytscet.astype(int))\n", |
|
|
238 |
"\n", |
|
|
239 |
"n_sampE, IE_dim = X_trainE.shape\n", |
|
|
240 |
"n_sampM, IM_dim = X_trainM.shape\n", |
|
|
241 |
"n_sampC, IC_dim = X_trainC.shape\n", |
|
|
242 |
"\n", |
|
|
243 |
"h_dim1 = hdm1\n", |
|
|
244 |
"h_dim2 = hdm2\n", |
|
|
245 |
"h_dim3 = hdm3 \n", |
|
|
246 |
"Z_in = h_dim1 + h_dim2 + h_dim3\n", |
|
|
247 |
"\n", |
|
|
248 |
"costtr = []\n", |
|
|
249 |
"auctr = []\n", |
|
|
250 |
"costts = []\n", |
|
|
251 |
"aucts = []\n", |
|
|
252 |
"\n", |
|
|
253 |
"class AEE(nn.Module):\n", |
|
|
254 |
" def __init__(self):\n", |
|
|
255 |
" super(AEE, self).__init__()\n", |
|
|
256 |
" self.EnE = torch.nn.Sequential(\n", |
|
|
257 |
" nn.Linear(IE_dim, h_dim1),\n", |
|
|
258 |
" nn.BatchNorm1d(h_dim1),\n", |
|
|
259 |
" nn.ReLU(),\n", |
|
|
260 |
" nn.Dropout(rate1))\n", |
|
|
261 |
" def forward(self, x):\n", |
|
|
262 |
" output = self.EnE(x)\n", |
|
|
263 |
" return output\n", |
|
|
264 |
"\n", |
|
|
265 |
"class AEM(nn.Module):\n", |
|
|
266 |
" def __init__(self):\n", |
|
|
267 |
" super(AEM, self).__init__()\n", |
|
|
268 |
" self.EnM = torch.nn.Sequential(\n", |
|
|
269 |
" nn.Linear(IM_dim, h_dim2),\n", |
|
|
270 |
" nn.BatchNorm1d(h_dim2),\n", |
|
|
271 |
" nn.ReLU(),\n", |
|
|
272 |
" nn.Dropout(rate2))\n", |
|
|
273 |
" def forward(self, x):\n", |
|
|
274 |
" output = self.EnM(x)\n", |
|
|
275 |
" return output \n", |
|
|
276 |
"\n", |
|
|
277 |
"\n", |
|
|
278 |
"class AEC(nn.Module):\n", |
|
|
279 |
" def __init__(self):\n", |
|
|
280 |
" super(AEC, self).__init__()\n", |
|
|
281 |
" self.EnC = torch.nn.Sequential(\n", |
|
|
282 |
" nn.Linear(IM_dim, h_dim3),\n", |
|
|
283 |
" nn.BatchNorm1d(h_dim3),\n", |
|
|
284 |
" nn.ReLU(),\n", |
|
|
285 |
" nn.Dropout(rate3))\n", |
|
|
286 |
" def forward(self, x):\n", |
|
|
287 |
" output = self.EnC(x)\n", |
|
|
288 |
" return output \n", |
|
|
289 |
"\n", |
|
|
290 |
"class Classifier(nn.Module):\n", |
|
|
291 |
" def __init__(self):\n", |
|
|
292 |
" super(Classifier, self).__init__()\n", |
|
|
293 |
" self.FC = torch.nn.Sequential(\n", |
|
|
294 |
" nn.Linear(Z_in, 1),\n", |
|
|
295 |
" nn.Dropout(rate4),\n", |
|
|
296 |
" nn.Sigmoid())\n", |
|
|
297 |
" def forward(self, x):\n", |
|
|
298 |
" return self.FC(x)\n", |
|
|
299 |
"\n", |
|
|
300 |
"torch.cuda.manual_seed_all(42)\n", |
|
|
301 |
"\n", |
|
|
302 |
"AutoencoderE = torch.load('EGFRv2Exprs.pt')\n", |
|
|
303 |
"AutoencoderM = torch.load('EGFRv2Mut.pt')\n", |
|
|
304 |
"AutoencoderC = torch.load('EGFRv2CNA.pt')\n", |
|
|
305 |
"\n", |
|
|
306 |
"Clas = torch.load('EGFRv2Class.pt')\n", |
|
|
307 |
"\n", |
|
|
308 |
"AutoencoderE.eval()\n", |
|
|
309 |
"AutoencoderM.eval()\n", |
|
|
310 |
"AutoencoderC.eval()\n", |
|
|
311 |
"Clas.eval()\n", |
|
|
312 |
"\n", |
|
|
313 |
"ZEX = AutoencoderE(torch.FloatTensor(X_trainE))\n", |
|
|
314 |
"ZMX = AutoencoderM(torch.FloatTensor(X_trainM))\n", |
|
|
315 |
"ZCX = AutoencoderC(torch.FloatTensor(X_trainC))\n", |
|
|
316 |
"ZTX = torch.cat((ZEX, ZMX, ZCX), 1)\n", |
|
|
317 |
"ZTX = F.normalize(ZTX, p=2, dim=0)\n", |
|
|
318 |
"PredX = Clas(ZTX)\n", |
|
|
319 |
"AUCt = roc_auc_score(Y, PredX.detach().numpy())\n", |
|
|
320 |
"print(AUCt)\n", |
|
|
321 |
"\n", |
|
|
322 |
"ZETerlo = AutoencoderE(TX_testEerlo)\n", |
|
|
323 |
"ZMTerlo = AutoencoderM(TX_testMerlo)\n", |
|
|
324 |
"ZCTerlo = AutoencoderC(TX_testCerlo)\n", |
|
|
325 |
"ZTTerlo = torch.cat((ZETerlo, ZMTerlo, ZCTerlo), 1)\n", |
|
|
326 |
"ZTTerlo = F.normalize(ZTTerlo, p=2, dim=0)\n", |
|
|
327 |
"PredTerlo = Clas(ZTTerlo)\n", |
|
|
328 |
"AUCterlo = roc_auc_score(Ytserlo, PredTerlo.detach().numpy())\n", |
|
|
329 |
"print(AUCterlo)\n", |
|
|
330 |
"\n", |
|
|
331 |
"ZETcet = AutoencoderE(TX_testEcet)\n", |
|
|
332 |
"ZMTcet = AutoencoderM(TX_testMcet)\n", |
|
|
333 |
"ZCTcet = AutoencoderC(TX_testCcet)\n", |
|
|
334 |
"ZTTcet = torch.cat((ZETcet, ZMTcet, ZCTcet), 1)\n", |
|
|
335 |
"ZTTcet = F.normalize(ZTTcet, p=2, dim=0)\n", |
|
|
336 |
"PredTcet = Clas(ZTTcet)\n", |
|
|
337 |
"AUCtcet = roc_auc_score(Ytscet, PredTcet.detach().numpy())\n", |
|
|
338 |
"print(AUCtcet)" |
|
|
339 |
] |
|
|
340 |
}, |
|
|
341 |
{ |
|
|
342 |
"cell_type": "code", |
|
|
343 |
"execution_count": null, |
|
|
344 |
"metadata": {}, |
|
|
345 |
"outputs": [], |
|
|
346 |
"source": [] |
|
|
347 |
}, |
|
|
348 |
{ |
|
|
349 |
"cell_type": "code", |
|
|
350 |
"execution_count": null, |
|
|
351 |
"metadata": {}, |
|
|
352 |
"outputs": [], |
|
|
353 |
"source": [] |
|
|
354 |
} |
|
|
355 |
], |
|
|
356 |
"metadata": { |
|
|
357 |
"kernelspec": { |
|
|
358 |
"display_name": "Python 3", |
|
|
359 |
"language": "python", |
|
|
360 |
"name": "python3" |
|
|
361 |
}, |
|
|
362 |
"language_info": { |
|
|
363 |
"codemirror_mode": { |
|
|
364 |
"name": "ipython", |
|
|
365 |
"version": 3 |
|
|
366 |
}, |
|
|
367 |
"file_extension": ".py", |
|
|
368 |
"mimetype": "text/x-python", |
|
|
369 |
"name": "python", |
|
|
370 |
"nbconvert_exporter": "python", |
|
|
371 |
"pygments_lexer": "ipython3", |
|
|
372 |
"version": "3.6.7" |
|
|
373 |
} |
|
|
374 |
}, |
|
|
375 |
"nbformat": 4, |
|
|
376 |
"nbformat_minor": 2 |
|
|
377 |
} |