Switch to unified view

a b/Cross validation/MOLI only expression/Gemcitabine_OnlyExprsv2_Script.py
1
import torch 
2
import torch.nn as nn
3
import torch.nn.functional as F
4
import torch.optim as optim
5
import numpy as np
6
import matplotlib
7
matplotlib.use('Agg')
8
import matplotlib.pyplot as plt
9
import matplotlib.gridspec as gridspec
10
import pandas as pd
11
import math
12
import sklearn.preprocessing as sk
13
import seaborn as sns
14
from sklearn import metrics
15
from sklearn.feature_selection import VarianceThreshold
16
from sklearn.model_selection import train_test_split
17
from utils import AllTripletSelector,HardestNegativeTripletSelector, RandomNegativeTripletSelector, SemihardNegativeTripletSelector # Strategies for selecting triplets within a minibatch
18
from metrics import AverageNonzeroTripletsMetric
19
from torch.utils.data.sampler import WeightedRandomSampler
20
from sklearn.metrics import roc_auc_score
21
from sklearn.metrics import average_precision_score
22
import random
23
from random import randint
24
from sklearn.model_selection import StratifiedKFold
25
26
save_results_to = '/home/hnoghabi/OnlyExprsv2/Gemcitabine/'
27
max_iter = 50
28
torch.manual_seed(42)
29
random.seed(42)
30
31
GDSCE = pd.read_csv("GDSC_exprs.Gemcitabine.eb_with.PDX_exprs.Gemcitabine.tsv", sep = "\t", index_col=0, decimal = ",")
32
GDSCE = pd.DataFrame.transpose(GDSCE)
33
# Load GDSC response
34
GDSCR = pd.read_csv("GDSC_response.Gemcitabine.tsv", sep = "\t", index_col=0, decimal = ",")
35
36
PDXE = pd.read_csv("PDX_exprs.Gemcitabine.eb_with.GDSC_exprs.Gemcitabine.tsv", sep = "\t", index_col=0, decimal = ",")
37
PDXE = pd.DataFrame.transpose(PDXE)
38
39
PDXM = pd.read_csv("PDX_mutations.Gemcitabine.tsv", sep = "\t", index_col=0, decimal = ",")
40
PDXM = pd.DataFrame.transpose(PDXM)
41
42
PDXC = pd.read_csv("PDX_CNA.Gemcitabine.tsv", sep = "\t", index_col=0, decimal = ",")
43
PDXC = pd.DataFrame.transpose(PDXC)
44
45
GDSCM = pd.read_csv("GDSC_mutations.Gemcitabine.tsv", sep = "\t", index_col=0, decimal = ",")
46
GDSCM = pd.DataFrame.transpose(GDSCM)
47
48
GDSCC = pd.read_csv("GDSC_CNA.Gemcitabine.tsv", sep = "\t", index_col=0, decimal = ",")
49
GDSCC.drop_duplicates(keep='last')
50
PDXC = PDXC.loc[:,~PDXC.columns.duplicated()]
51
GDSCC = pd.DataFrame.transpose(GDSCC)
52
selector = VarianceThreshold(0.05)
53
selector.fit_transform(GDSCE)
54
GDSCE = GDSCE[GDSCE.columns[selector.get_support(indices=True)]]
55
56
ls = GDSCE.columns.intersection(GDSCM.columns)
57
ls = ls.intersection(GDSCC.columns)
58
ls = ls.intersection(PDXE.columns)
59
ls = ls.intersection(PDXM.columns)
60
ls = ls.intersection(PDXC.columns)
61
ls2 = GDSCE.index.intersection(GDSCM.index)
62
ls2 = ls2.intersection(GDSCC.index)
63
ls3 = PDXE.index.intersection(PDXM.index)
64
ls3 = ls3.intersection(PDXC.index)
65
ls = pd.unique(ls)
66
67
PDXE = PDXE.loc[ls3,ls]
68
PDXM = PDXM.loc[ls3,ls]
69
PDXC = PDXC.loc[ls3,ls]
70
GDSCE = GDSCE.loc[ls2,ls]
71
GDSCM = GDSCM.loc[ls2,ls]
72
GDSCC = GDSCC.loc[ls2,ls]
73
74
GDSCR.loc[GDSCR.iloc[:,0] == 'R'] = 0
75
GDSCR.loc[GDSCR.iloc[:,0] == 'S'] = 1
76
GDSCR.columns = ['targets']
77
GDSCR = GDSCR.loc[ls2,:]
78
79
ls_mb_size = [13, 30, 64]
80
ls_h_dim = [1024, 256, 128, 512, 64, 32]
81
ls_marg = [0.5, 1, 1.5, 2, 2.5, 3]
82
ls_lr = [0.5, 0.1, 0.05, 0.01, 0.001, 0.005, 0.0005, 0.0001,0.00005, 0.00001]
83
ls_epoch = [20, 50, 90, 100]
84
ls_rate = [0.3, 0.4, 0.5]
85
ls_wd = [0.1, 0.001, 0.0001]
86
ls_lam = [0.1, 0.5, 0.01, 0.05, 0.001, 0.005]
87
88
Y = GDSCR['targets'].values
89
90
skf = StratifiedKFold(n_splits=5, random_state=42)
91
    
92
for iters in range(max_iter):
93
    k = 0
94
    mbs = random.choice(ls_mb_size)
95
    hdm = random.choice(ls_h_dim)
96
    mrg = random.choice(ls_marg)
97
    lre = random.choice(ls_lr)
98
    lrCL = random.choice(ls_lr)
99
    epch = random.choice(ls_epoch)
100
    rate = random.choice(ls_rate)
101
    wd = random.choice(ls_wd)   
102
    lam = random.choice(ls_lam)       
103
104
    for train_index, test_index in skf.split(GDSCE.values, Y):
105
        k = k + 1
106
        X_trainE = GDSCE.values[train_index,:]
107
        X_testE =  GDSCE.values[test_index,:]
108
        y_trainE = Y[train_index]
109
        y_testE = Y[test_index]
110
        
111
        scalerGDSC = sk.StandardScaler()
112
        scalerGDSC.fit(X_trainE)
113
        X_trainE = scalerGDSC.transform(X_trainE)
114
        X_testE = scalerGDSC.transform(X_testE)
115
        
116
        TX_testE = torch.FloatTensor(X_testE)
117
        ty_testE = torch.FloatTensor(y_testE.astype(int))
118
        
119
        #Train
120
        class_sample_count = np.array([len(np.where(y_trainE==t)[0]) for t in np.unique(y_trainE)])
121
        weight = 1. / class_sample_count
122
        samples_weight = np.array([weight[t] for t in y_trainE])
123
124
        samples_weight = torch.from_numpy(samples_weight)
125
        sampler = WeightedRandomSampler(samples_weight.type('torch.DoubleTensor'), len(samples_weight), replacement=True)
126
127
        mb_size = mbs
128
129
        trainDataset = torch.utils.data.TensorDataset(torch.FloatTensor(X_trainE), torch.FloatTensor(y_trainE.astype(int)))
130
131
        trainLoader = torch.utils.data.DataLoader(dataset = trainDataset, batch_size=mb_size, shuffle=False, num_workers=1, sampler = sampler)
132
133
        n_sampE, IE_dim = X_trainE.shape
134
135
        h_dim = hdm
136
        Z_in = h_dim
137
        marg = mrg
138
        lrE = lre
139
        epoch = epch
140
141
        costtr = []
142
        auctr = []
143
        costts = []
144
        aucts = []
145
146
        triplet_selector = RandomNegativeTripletSelector(marg)
147
        triplet_selector2 = AllTripletSelector()
148
149
        class AEE(nn.Module):
150
            def __init__(self):
151
                super(AEE, self).__init__()
152
                self.EnE = torch.nn.Sequential(
153
                    nn.Linear(IE_dim, h_dim),
154
                    nn.BatchNorm1d(h_dim),
155
                    nn.ReLU(),
156
                    nn.Dropout())
157
            def forward(self, x):
158
                output = self.EnE(x)
159
                return output  
160
161
        class OnlineTriplet(nn.Module):
162
            def __init__(self, marg, triplet_selector):
163
                super(OnlineTriplet, self).__init__()
164
                self.marg = marg
165
                self.triplet_selector = triplet_selector
166
            def forward(self, embeddings, target):
167
                triplets = self.triplet_selector.get_triplets(embeddings, target)
168
                return triplets
169
170
        class OnlineTestTriplet(nn.Module):
171
            def __init__(self, marg, triplet_selector):
172
                super(OnlineTestTriplet, self).__init__()
173
                self.marg = marg
174
                self.triplet_selector = triplet_selector
175
            def forward(self, embeddings, target):
176
                triplets = self.triplet_selector.get_triplets(embeddings, target)
177
                return triplets    
178
179
        class Classifier(nn.Module):
180
            def __init__(self):
181
                super(Classifier, self).__init__()
182
                self.FC = torch.nn.Sequential(
183
                    nn.Linear(Z_in, 1),
184
                    nn.Dropout(rate),
185
                    nn.Sigmoid())
186
            def forward(self, x):
187
                return self.FC(x)
188
189
        torch.cuda.manual_seed_all(42)
190
191
        AutoencoderE = AEE()
192
193
194
        solverE = optim.Adagrad(AutoencoderE.parameters(), lr=lrE)
195
196
        trip_criterion = torch.nn.TripletMarginLoss(margin=marg, p=2)
197
        TripSel = OnlineTriplet(marg, triplet_selector)
198
        TripSel2 = OnlineTestTriplet(marg, triplet_selector2)
199
200
        Clas = Classifier()
201
        SolverClass = optim.Adagrad(Clas.parameters(), lr=lrCL, weight_decay = wd)
202
        C_loss = torch.nn.BCELoss()
203
204
        for it in range(epoch):
205
206
            epoch_cost4 = 0
207
            epoch_cost3 = []
208
            num_minibatches = int(n_sampE / mb_size) 
209
210
            for i, (dataE, target) in enumerate(trainLoader):
211
                flag = 0
212
                AutoencoderE.train()
213
214
                Clas.train()
215
216
                if torch.mean(target)!=0. and torch.mean(target)!=1.: 
217
                    ZEX = AutoencoderE(dataE)
218
                    Pred = Clas(ZEX)
219
220
                    Triplets = TripSel2(ZEX, target)
221
                    loss = lam * trip_criterion(ZEX[Triplets[:,0],:],ZEX[Triplets[:,1],:],ZEX[Triplets[:,2],:]) + C_loss(Pred,target.view(-1,1))     
222
223
                    y_true = target.view(-1,1)
224
                    y_pred = Pred
225
                    AUC = roc_auc_score(y_true.detach().numpy(),y_pred.detach().numpy()) 
226
227
                    solverE.zero_grad()
228
                    SolverClass.zero_grad()
229
230
                    loss.backward()
231
232
                    solverE.step()
233
                    SolverClass.step()
234
235
                    epoch_cost4 = epoch_cost4 + (loss / num_minibatches)
236
                    epoch_cost3.append(AUC)
237
                    flag = 1
238
239
            if flag == 1:
240
                costtr.append(torch.mean(epoch_cost4))
241
                auctr.append(np.mean(epoch_cost3))
242
                print('Iter-{}; Total loss: {:.4}'.format(it, loss))
243
244
            with torch.no_grad():
245
246
                AutoencoderE.eval()
247
                Clas.eval()
248
249
                ZET = AutoencoderE(TX_testE)
250
                PredT = Clas(ZET)
251
252
                TripletsT = TripSel2(ZET, ty_testE)
253
                lossT = lam * trip_criterion(ZET[TripletsT[:,0],:], ZET[TripletsT[:,1],:], ZET[TripletsT[:,2],:]) + C_loss(PredT,ty_testE.view(-1,1))
254
255
                y_truet = ty_testE.view(-1,1)
256
                y_predt = PredT
257
                AUCt = roc_auc_score(y_truet.detach().numpy(),y_predt.detach().numpy())        
258
259
                costts.append(lossT)
260
                aucts.append(AUCt)
261
262
        plt.plot(np.squeeze(costtr), '-r',np.squeeze(costts), '-b')
263
        plt.ylabel('Total cost')
264
        plt.xlabel('iterations (per tens)')
265
266
        title = 'Cost Gemcitabine iter = {}, fold = {}, mb_size = {},  h_dim = {}, marg = {}, lrE = {}, epoch = {}, rate = {}, wd = {}, lrCL = {}, lam = {}'.\
267
                      format(iters, k, mbs, hdm, mrg, lre, epch, rate, wd, lrCL, lam)
268
269
        plt.suptitle(title)
270
        plt.savefig(save_results_to + title + '.png', dpi = 150)
271
        plt.close()
272
273
        plt.plot(np.squeeze(auctr), '-r',np.squeeze(aucts), '-b')
274
        plt.ylabel('AUC')
275
        plt.xlabel('iterations (per tens)')
276
277
        title = 'AUC Gemcitabine iter = {}, fold = {}, mb_size = {},  h_dim = {}, marg = {}, lrE = {}, epoch = {}, rate = {}, wd = {}, lrCL = {}, lam = {}'.\
278
                      format(iters, k, mbs, hdm, mrg, lre, epch, rate, wd, lrCL, lam)        
279
280
        plt.suptitle(title)
281
        plt.savefig(save_results_to + title + '.png', dpi = 150)
282
        plt.close()