a b/Cross validation/MOLI only expression/Cetuximab_OnlyExprsv2_Script.py
1
import torch 
2
import torch.nn as nn
3
import torch.nn.functional as F
4
import torch.optim as optim
5
import numpy as np
6
import matplotlib
7
matplotlib.use('Agg')
8
import matplotlib.pyplot as plt
9
import matplotlib.gridspec as gridspec
10
import pandas as pd
11
import math
12
import sklearn.preprocessing as sk
13
import seaborn as sns
14
from sklearn import metrics
15
from sklearn.feature_selection import VarianceThreshold
16
from sklearn.model_selection import train_test_split
17
from utils import AllTripletSelector,HardestNegativeTripletSelector, RandomNegativeTripletSelector, SemihardNegativeTripletSelector # Strategies for selecting triplets within a minibatch
18
from metrics import AverageNonzeroTripletsMetric
19
from torch.utils.data.sampler import WeightedRandomSampler
20
from sklearn.metrics import roc_auc_score
21
from sklearn.metrics import average_precision_score
22
import random
23
from random import randint
24
from sklearn.model_selection import StratifiedKFold
25
26
save_results_to = '/home/hnoghabi/OnlyExprsv2/Cetuximab/'
27
torch.manual_seed(42)
28
random.seed(42)
29
30
max_iter = 50
31
32
GDSCE = pd.read_csv("GDSC_exprs.Cetuximab.eb_with.PDX_exprs.Cetuximab.tsv", 
33
                    sep = "\t", index_col=0, decimal = ",")
34
GDSCE = pd.DataFrame.transpose(GDSCE)
35
36
GDSCR = pd.read_csv("GDSC_response.Cetuximab.tsv", 
37
                    sep = "\t", index_col=0, decimal = ",")
38
39
PDXE = pd.read_csv("PDX_exprs.Cetuximab.eb_with.GDSC_exprs.Cetuximab.tsv", 
40
                   sep = "\t", index_col=0, decimal = ",")
41
PDXE = pd.DataFrame.transpose(PDXE)
42
43
PDXM = pd.read_csv("PDX_mutations.Cetuximab.tsv", 
44
                   sep = "\t", index_col=0, decimal = ",")
45
PDXM = pd.DataFrame.transpose(PDXM)
46
47
PDXC = pd.read_csv("PDX_CNA.Cetuximab.tsv", 
48
                   sep = "\t", index_col=0, decimal = ",")
49
PDXC.drop_duplicates(keep='last')
50
PDXC = pd.DataFrame.transpose(PDXC)
51
52
GDSCM = pd.read_csv("GDSC_mutations.Cetuximab.tsv", 
53
                    sep = "\t", index_col=0, decimal = ",")
54
GDSCM = pd.DataFrame.transpose(GDSCM)
55
56
57
GDSCC = pd.read_csv("GDSC_CNA.Cetuximab.tsv", 
58
                    sep = "\t", index_col=0, decimal = ",")
59
GDSCC.drop_duplicates(keep='last')
60
GDSCC = pd.DataFrame.transpose(GDSCC)
61
62
selector = VarianceThreshold(0.05)
63
selector.fit_transform(GDSCE)
64
GDSCE = GDSCE[GDSCE.columns[selector.get_support(indices=True)]]
65
66
ls = GDSCE.columns.intersection(GDSCM.columns)
67
ls = ls.intersection(GDSCC.columns)
68
ls = ls.intersection(PDXE.columns)
69
ls = ls.intersection(PDXM.columns)
70
ls = ls.intersection(PDXC.columns)
71
ls2 = GDSCE.index.intersection(GDSCM.index)
72
ls2 = ls2.intersection(GDSCC.index)
73
ls3 = PDXE.index.intersection(PDXM.index)
74
ls3 = ls3.intersection(PDXC.index)
75
ls = pd.unique(ls)
76
77
PDXE = PDXE.loc[ls3,ls]
78
PDXM = PDXM.loc[ls3,ls]
79
PDXC = PDXC.loc[ls3,ls]
80
GDSCE = GDSCE.loc[ls2,ls]
81
GDSCM = GDSCM.loc[ls2,ls]
82
GDSCC = GDSCC.loc[ls2,ls]
83
84
GDSCR.loc[GDSCR.iloc[:,0] == 'R'] = 0
85
GDSCR.loc[GDSCR.iloc[:,0] == 'S'] = 1
86
GDSCR.columns = ['targets']
87
GDSCR = GDSCR.loc[ls2,:]
88
89
ls_mb_size = [14, 30, 64]
90
ls_h_dim = [1024, 256, 128, 512, 64, 32]
91
ls_marg = [0.5, 1, 1.5, 2, 2.5, 3]
92
ls_lr = [0.5, 0.1, 0.05, 0.01, 0.001, 0.005, 0.0005, 0.0001,0.00005, 0.00001]
93
ls_epoch = [20, 50, 90, 100]
94
ls_rate = [0.3, 0.4, 0.5]
95
ls_wd = [0.1, 0.001, 0.0001]
96
ls_lam = [0.1, 0.5, 0.01, 0.05, 0.001, 0.005]
97
98
Y = GDSCR['targets'].values
99
100
skf = StratifiedKFold(n_splits=5, random_state=42)
101
    
102
for iters in range(max_iter):
103
    k = 0
104
    mbs = random.choice(ls_mb_size)
105
    hdm = random.choice(ls_h_dim)
106
    mrg = random.choice(ls_marg)
107
    lre = random.choice(ls_lr)
108
    lrCL = random.choice(ls_lr)
109
    epch = random.choice(ls_epoch)
110
    rate = random.choice(ls_rate)
111
    wd = random.choice(ls_wd)   
112
    lam = random.choice(ls_lam)       
113
114
    for train_index, test_index in skf.split(GDSCE.values, Y):
115
        k = k + 1
116
        X_trainE = GDSCE.values[train_index,:]
117
        X_testE =  GDSCE.values[test_index,:]
118
        y_trainE = Y[train_index]
119
        y_testE = Y[test_index]
120
        
121
        scalerGDSC = sk.StandardScaler()
122
        scalerGDSC.fit(X_trainE)
123
        X_trainE = scalerGDSC.transform(X_trainE)
124
        X_testE = scalerGDSC.transform(X_testE)
125
        
126
        TX_testE = torch.FloatTensor(X_testE)
127
        ty_testE = torch.FloatTensor(y_testE.astype(int))
128
        
129
        #Train
130
        class_sample_count = np.array([len(np.where(y_trainE==t)[0]) for t in np.unique(y_trainE)])
131
        weight = 1. / class_sample_count
132
        samples_weight = np.array([weight[t] for t in y_trainE])
133
134
        samples_weight = torch.from_numpy(samples_weight)
135
        sampler = WeightedRandomSampler(samples_weight.type('torch.DoubleTensor'), len(samples_weight), replacement=True)
136
137
        mb_size = mbs
138
139
        trainDataset = torch.utils.data.TensorDataset(torch.FloatTensor(X_trainE), torch.FloatTensor(y_trainE.astype(int)))
140
141
        trainLoader = torch.utils.data.DataLoader(dataset = trainDataset, batch_size=mb_size, shuffle=False, num_workers=1, sampler = sampler)
142
143
        n_sampE, IE_dim = X_trainE.shape
144
145
        h_dim = hdm
146
        Z_in = h_dim
147
        marg = mrg
148
        lrE = lre
149
        epoch = epch
150
151
        costtr = []
152
        auctr = []
153
        costts = []
154
        aucts = []
155
156
        triplet_selector = RandomNegativeTripletSelector(marg)
157
        triplet_selector2 = AllTripletSelector()
158
159
        class AEE(nn.Module):
160
            def __init__(self):
161
                super(AEE, self).__init__()
162
                self.EnE = torch.nn.Sequential(
163
                    nn.Linear(IE_dim, h_dim),
164
                    nn.BatchNorm1d(h_dim),
165
                    nn.ReLU(),
166
                    nn.Dropout())
167
            def forward(self, x):
168
                output = self.EnE(x)
169
                return output  
170
171
        class OnlineTriplet(nn.Module):
172
            def __init__(self, marg, triplet_selector):
173
                super(OnlineTriplet, self).__init__()
174
                self.marg = marg
175
                self.triplet_selector = triplet_selector
176
            def forward(self, embeddings, target):
177
                triplets = self.triplet_selector.get_triplets(embeddings, target)
178
                return triplets
179
180
        class OnlineTestTriplet(nn.Module):
181
            def __init__(self, marg, triplet_selector):
182
                super(OnlineTestTriplet, self).__init__()
183
                self.marg = marg
184
                self.triplet_selector = triplet_selector
185
            def forward(self, embeddings, target):
186
                triplets = self.triplet_selector.get_triplets(embeddings, target)
187
                return triplets    
188
189
        class Classifier(nn.Module):
190
            def __init__(self):
191
                super(Classifier, self).__init__()
192
                self.FC = torch.nn.Sequential(
193
                    nn.Linear(Z_in, 1),
194
                    nn.Dropout(rate),
195
                    nn.Sigmoid())
196
            def forward(self, x):
197
                return self.FC(x)
198
199
        torch.cuda.manual_seed_all(42)
200
201
        AutoencoderE = AEE()
202
203
204
        solverE = optim.Adagrad(AutoencoderE.parameters(), lr=lrE)
205
206
        trip_criterion = torch.nn.TripletMarginLoss(margin=marg, p=2)
207
        TripSel = OnlineTriplet(marg, triplet_selector)
208
        TripSel2 = OnlineTestTriplet(marg, triplet_selector2)
209
210
        Clas = Classifier()
211
        SolverClass = optim.Adagrad(Clas.parameters(), lr=lrCL, weight_decay = wd)
212
        C_loss = torch.nn.BCELoss()
213
214
        for it in range(epoch):
215
216
            epoch_cost4 = 0
217
            epoch_cost3 = []
218
            num_minibatches = int(n_sampE / mb_size) 
219
220
            for i, (dataE, target) in enumerate(trainLoader):
221
                flag = 0
222
                AutoencoderE.train()
223
224
                Clas.train()
225
226
                if torch.mean(target)!=0. and torch.mean(target)!=1.: 
227
                    ZEX = AutoencoderE(dataE)
228
                    Pred = Clas(ZEX)
229
230
                    Triplets = TripSel2(ZEX, target)
231
                    loss =  lam * trip_criterion(ZEX[Triplets[:,0],:],ZEX[Triplets[:,1],:],ZEX[Triplets[:,2],:]) +C_loss(Pred,target.view(-1,1))     
232
233
                    y_true = target.view(-1,1)
234
                    y_pred = Pred
235
                    AUC = roc_auc_score(y_true.detach().numpy(),y_pred.detach().numpy()) 
236
237
                    solverE.zero_grad()
238
                    SolverClass.zero_grad()
239
240
                    loss.backward()
241
242
                    solverE.step()
243
                    SolverClass.step()
244
245
                    epoch_cost4 = epoch_cost4 + (loss / num_minibatches)
246
                    epoch_cost3.append(AUC)
247
                    flag = 1
248
249
            if flag == 1:
250
                costtr.append(torch.mean(epoch_cost4))
251
                auctr.append(np.mean(epoch_cost3))
252
                print('Iter-{}; Total loss: {:.4}'.format(it, loss))
253
254
            with torch.no_grad():
255
256
                AutoencoderE.eval()
257
                Clas.eval()
258
259
                ZET = AutoencoderE(TX_testE)
260
                PredT = Clas(ZET)
261
262
                TripletsT = TripSel2(ZET, ty_testE)
263
                lossT =  lam * trip_criterion(ZET[TripletsT[:,0],:], ZET[TripletsT[:,1],:], ZET[TripletsT[:,2],:]) +C_loss(PredT,ty_testE.view(-1,1))
264
265
                y_truet = ty_testE.view(-1,1)
266
                y_predt = PredT
267
                AUCt = roc_auc_score(y_truet.detach().numpy(),y_predt.detach().numpy())        
268
269
                costts.append(lossT)
270
                aucts.append(AUCt)
271
272
        plt.plot(np.squeeze(costtr), '-r',np.squeeze(costts), '-b')
273
        plt.ylabel('Total cost')
274
        plt.xlabel('iterations (per tens)')
275
276
        title = 'Cost Cetuximab iter = {}, fold = {}, mb_size = {},  h_dim = {}, marg = {}, lrE = {}, epoch = {}, rate = {}, wd = {}, lrCL = {}, lam = {}'.\
277
                      format(iters, k, mbs, hdm, mrg, lre, epch, rate, wd, lrCL, lam)
278
279
        plt.suptitle(title)
280
        plt.savefig(save_results_to + title + '.png', dpi = 150)
281
        plt.close()
282
283
        plt.plot(np.squeeze(auctr), '-r',np.squeeze(aucts), '-b')
284
        plt.ylabel('AUC')
285
        plt.xlabel('iterations (per tens)')
286
287
        title = 'AUC Cetuximab iter = {}, fold = {}, mb_size = {},  h_dim = {}, marg = {}, lrE = {}, epoch = {}, rate = {}, wd = {}, lrCL = {}, lam = {}'.\
288
                      format(iters, k, mbs, hdm, mrg, lre, epch, rate, wd, lrCL, lam)        
289
290
        plt.suptitle(title)
291
        plt.savefig(save_results_to + title + '.png', dpi = 150)
292
        plt.close()