a b/Cross validation/MOLI only classifier/GemcitabineTCGA_cvClassifierNetv8_ScriptCPU.py
1
import torch 
2
import torch.nn as nn
3
import torch.nn.functional as F
4
import torch.optim as optim
5
import numpy as np
6
import matplotlib
7
matplotlib.use('Agg')
8
import matplotlib.pyplot as plt
9
import matplotlib.gridspec as gridspec
10
import pandas as pd
11
import math
12
import sklearn.preprocessing as sk
13
import seaborn as sns
14
from sklearn import metrics
15
from sklearn.feature_selection import VarianceThreshold
16
from sklearn.model_selection import train_test_split
17
from torch.utils.data.sampler import WeightedRandomSampler
18
from sklearn.metrics import roc_auc_score
19
from sklearn.metrics import average_precision_score
20
import random
21
from sklearn.model_selection import StratifiedKFold
22
23
save_results_to = '/home/hnoghabi/CVClassifierResultsv8/GemcitabineTCGA/'
24
max_iter = 50
25
torch.manual_seed(42)
26
27
GDSCE = pd.read_csv("GDSC_exprs.Gemcitabine.eb_with.TCGA_exprs.Gemcitabine.tsv", 
28
                    sep = "\t", index_col=0, decimal = ",")
29
GDSCE = pd.DataFrame.transpose(GDSCE)
30
31
TCGAE = pd.read_csv("TCGA_exprs.Gemcitabine.eb_with.GDSC_exprs.Gemcitabine.tsv", 
32
                   sep = "\t", index_col=0, decimal = ",")
33
TCGAE = pd.DataFrame.transpose(TCGAE)
34
35
TCGAM = pd.read_csv("TCGA_mutations.Gemcitabine.tsv", 
36
                   sep = "\t", index_col=0, decimal = ".")
37
TCGAM = pd.DataFrame.transpose(TCGAM)
38
TCGAM = TCGAM.loc[:,~TCGAM.columns.duplicated()]
39
40
TCGAC = pd.read_csv("TCGA_CNA.Gemcitabine.tsv", 
41
                   sep = "\t", index_col=0, decimal = ".")
42
TCGAC = pd.DataFrame.transpose(TCGAC)
43
TCGAC = TCGAC.loc[:,~TCGAC.columns.duplicated()]
44
45
GDSCM = pd.read_csv("GDSC_mutations.Gemcitabine.tsv", 
46
                    sep = "\t", index_col=0, decimal = ".")
47
GDSCM = pd.DataFrame.transpose(GDSCM)
48
GDSCM = GDSCM.loc[:,~GDSCM.columns.duplicated()]
49
50
GDSCC = pd.read_csv("GDSC_CNA.Gemcitabine.tsv", 
51
                    sep = "\t", index_col=0, decimal = ".")
52
GDSCC.drop_duplicates(keep='last')
53
GDSCC = pd.DataFrame.transpose(GDSCC)
54
GDSCC = GDSCC.loc[:,~GDSCC.columns.duplicated()]
55
56
selector = VarianceThreshold(0.05)
57
selector.fit_transform(GDSCE)
58
GDSCE = GDSCE[GDSCE.columns[selector.get_support(indices=True)]]
59
60
TCGAC = TCGAC.fillna(0)
61
TCGAC[TCGAC != 0.0] = 1
62
TCGAM = TCGAM.fillna(0)
63
TCGAM[TCGAM != 0.0] = 1
64
GDSCM = GDSCM.fillna(0)
65
GDSCM[GDSCM != 0.0] = 1
66
GDSCC = GDSCC.fillna(0)
67
GDSCC[GDSCC != 0.0] = 1
68
69
ls = GDSCE.columns.intersection(GDSCM.columns)
70
ls = ls.intersection(GDSCC.columns)
71
ls = ls.intersection(TCGAE.columns)
72
ls = ls.intersection(TCGAM.columns)
73
ls = ls.intersection(TCGAC.columns)
74
ls2 = GDSCE.index.intersection(GDSCM.index)
75
ls2 = ls2.intersection(GDSCC.index)
76
ls3 = TCGAE.index.intersection(TCGAM.index)
77
ls3 = ls3.intersection(TCGAC.index)
78
ls = pd.unique(ls)
79
80
TCGAE = TCGAE.loc[ls3,ls]
81
TCGAM = TCGAM.loc[ls3,ls]
82
TCGAC = TCGAC.loc[ls3,ls]
83
GDSCE = GDSCE.loc[ls2,ls]
84
GDSCM = GDSCM.loc[ls2,ls]
85
GDSCC = GDSCC.loc[ls2,ls]
86
87
GDSCR = pd.read_csv("GDSC_response.Gemcitabine.tsv", 
88
                    sep = "\t", index_col=0, decimal = ",")
89
TCGAR = pd.read_csv("TCGA_response.Gemcitabine.tsv", 
90
                       sep = "\t", index_col=0, decimal = ",")
91
92
GDSCR.rename(mapper = str, axis = 'index', inplace = True)
93
GDSCR = GDSCR.loc[ls2,:]
94
#GDSCR.loc[GDSCR.iloc[:,0] == 'R','response'] = 0
95
#GDSCR.loc[GDSCR.iloc[:,0] == 'S','response'] = 1
96
97
TCGAR = TCGAR.loc[ls3,:]
98
#TCGAR.loc[TCGAR.iloc[:,1] == 'R','response'] = 0
99
#TCGAR.loc[TCGAR.iloc[:,1] == 'S','response'] = 1
100
101
d = {"R":0,"S":1}
102
GDSCR["response"] = GDSCR.loc[:,"response"].apply(lambda x: d[x])
103
TCGAR["response"] = TCGAR.loc[:,"response"].apply(lambda x: d[x])
104
105
Y = GDSCR['response'].values
106
107
ls_mb_size = [32, 62]
108
ls_h_dim = [1024, 512, 256, 128, 64, 32, 16]
109
ls_z_dim = [128, 64, 32, 16]
110
ls_marg = [0.5, 1, 1.5, 2, 2.5]
111
ls_lr = [0.5, 0.1, 0.05, 0.01, 0.001, 0.005, 0.0005, 0.0001,0.00005, 0.00001]
112
ls_epoch = [20, 50, 10, 15, 30, 40, 60, 70, 80, 90, 100]
113
ls_rate = [0.3, 0.4, 0.5, 0.6, 0.7, 0.8]
114
ls_wd = [0.01, 0.001, 0.1, 0.0001]
115
116
skf = StratifiedKFold(n_splits=7, random_state=42)
117
    
118
for iters in range(max_iter):
119
    k = 0
120
    mbs = random.choice(ls_mb_size)
121
    hdm = random.choice(ls_h_dim)
122
    zdm = random.choice(ls_z_dim)
123
    lre = random.choice(ls_lr)
124
    lrm = random.choice(ls_lr)
125
    lrc = random.choice(ls_lr)
126
    lrCL = random.choice(ls_lr)
127
    epch = random.choice(ls_epoch)
128
    wd = random.choice(ls_wd)
129
    rate = random.choice(ls_rate)
130
    
131
    for train_index, test_index in skf.split(GDSCE.values, Y):
132
        k = k + 1
133
        X_trainE = GDSCE.values[train_index,:]
134
        X_testE =  GDSCE.values[test_index,:]
135
        X_trainM = GDSCM.values[train_index,:]
136
        X_testM = GDSCM.values[test_index,:]
137
        X_trainC = GDSCC.values[train_index,:]
138
        X_testC = GDSCM.values[test_index,:]
139
        y_trainE = Y[train_index]
140
        y_testE = Y[test_index]
141
        
142
        scalerGDSC = sk.StandardScaler()
143
        scalerGDSC.fit(X_trainE)
144
        X_trainE = scalerGDSC.transform(X_trainE)
145
        X_testE = scalerGDSC.transform(X_testE)
146
147
        X_trainM = np.nan_to_num(X_trainM)
148
        X_trainC = np.nan_to_num(X_trainC)
149
        X_testM = np.nan_to_num(X_testM)
150
        X_testC = np.nan_to_num(X_testC)
151
        
152
        TX_testE = torch.FloatTensor(X_testE)
153
        TX_testM = torch.FloatTensor(X_testM)
154
        TX_testC = torch.FloatTensor(X_testC)
155
        ty_testE = torch.FloatTensor(y_testE.astype(int))
156
        
157
        #Train
158
        class_sample_count = np.array([len(np.where(y_trainE==t)[0]) for t in np.unique(y_trainE)])
159
        weight = 1. / class_sample_count
160
        samples_weight = np.array([weight[t] for t in y_trainE])
161
162
        samples_weight = torch.from_numpy(samples_weight)
163
        sampler = WeightedRandomSampler(samples_weight.type('torch.DoubleTensor'), len(samples_weight), replacement=True)
164
165
        mb_size = mbs
166
167
        trainDataset = torch.utils.data.TensorDataset(torch.FloatTensor(X_trainE), torch.FloatTensor(X_trainM), 
168
                                                      torch.FloatTensor(X_trainC), torch.FloatTensor(y_trainE.astype(int)))
169
170
        trainLoader = torch.utils.data.DataLoader(dataset = trainDataset, batch_size=mb_size, shuffle=False, num_workers=1, sampler = sampler)
171
172
        n_sampE, IE_dim = X_trainE.shape
173
        n_sampM, IM_dim = X_trainM.shape
174
        n_sampC, IC_dim = X_trainC.shape
175
176
        h_dim = hdm
177
        Z_dim = zdm
178
        Z_in = h_dim + h_dim + h_dim
179
        lrE = lre
180
        lrM = lrm
181
        lrC = lrc
182
        epoch = epch
183
184
        costtr = []
185
        auctr = []
186
        costts = []
187
        aucts = []
188
189
        class AEE(nn.Module):
190
            def __init__(self):
191
                super(AEE, self).__init__()
192
                self.EnE = torch.nn.Sequential(
193
                    nn.Linear(IE_dim, h_dim),
194
                    nn.BatchNorm1d(h_dim),
195
                    nn.ReLU(),
196
                    nn.Dropout())
197
            def forward(self, x):
198
                output = self.EnE(x)
199
                return output
200
201
        class AEM(nn.Module):
202
            def __init__(self):
203
                super(AEM, self).__init__()
204
                self.EnM = torch.nn.Sequential(
205
                    nn.Linear(IM_dim, h_dim),
206
                    nn.BatchNorm1d(h_dim),
207
                    nn.ReLU(),
208
                    nn.Dropout())
209
            def forward(self, x):
210
                output = self.EnM(x)
211
                return output    
212
213
214
        class AEC(nn.Module):
215
            def __init__(self):
216
                super(AEC, self).__init__()
217
                self.EnC = torch.nn.Sequential(
218
                    nn.Linear(IM_dim, h_dim),
219
                    nn.BatchNorm1d(h_dim),
220
                    nn.ReLU(),
221
                    nn.Dropout())
222
            def forward(self, x):
223
                output = self.EnC(x)
224
                return output      
225
        class Classifier(nn.Module):
226
            def __init__(self):
227
                super(Classifier, self).__init__()
228
                self.FC = torch.nn.Sequential(
229
                    nn.Linear(Z_in, Z_dim),
230
                    nn.ReLU(),
231
                    nn.Dropout(rate),
232
                    nn.Linear(Z_dim, 1),
233
                    nn.Dropout(rate),
234
                    nn.Sigmoid())
235
            def forward(self, x):
236
                return self.FC(x)
237
        
238
        torch.cuda.manual_seed_all(42)
239
240
        AutoencoderE = AEE()
241
        AutoencoderM = AEM()
242
        AutoencoderC = AEC()
243
244
        solverE = optim.Adagrad(AutoencoderE.parameters(), lr=lrE)
245
        solverM = optim.Adagrad(AutoencoderM.parameters(), lr=lrM)
246
        solverC = optim.Adagrad(AutoencoderC.parameters(), lr=lrC)
247
248
        Clas = Classifier()
249
        SolverClass = optim.Adagrad(Clas.parameters(), lr=lrCL, weight_decay = wd)
250
        C_loss = torch.nn.BCELoss()
251
252
        for it in range(epoch):
253
254
            epoch_cost4 = 0
255
            epoch_cost3 = []
256
            num_minibatches = int(n_sampE / mb_size) 
257
258
            for i, (dataE, dataM, dataC, target) in enumerate(trainLoader):
259
                flag = 0
260
                AutoencoderE.train()
261
                AutoencoderM.train()
262
                AutoencoderC.train()
263
                Clas.train()
264
                
265
                if torch.mean(target)!=0. and torch.mean(target)!=1.:                      
266
267
                    ZEX = AutoencoderE(dataE)
268
                    ZMX = AutoencoderM(dataM)
269
                    ZCX = AutoencoderC(dataC)
270
271
                    ZT = torch.cat((ZEX, ZMX, ZCX), 1)
272
                    ZT = F.normalize(ZT, p=2, dim=0)
273
274
                    Pred = Clas(ZT)
275
                    loss = C_loss(Pred,target.view(-1,1))   
276
277
                    y_true = target.view(-1,1)
278
                    y_pred = Pred
279
                    AUC = roc_auc_score(y_true.detach().numpy(),y_pred.detach().numpy()) 
280
281
                    solverE.zero_grad()
282
                    solverM.zero_grad()
283
                    solverC.zero_grad()
284
                    SolverClass.zero_grad()
285
286
                    loss.backward()
287
288
                    solverE.step()
289
                    solverM.step()
290
                    solverC.step()
291
                    SolverClass.step()
292
                    
293
                    epoch_cost4 = epoch_cost4 + (loss / num_minibatches)
294
                    epoch_cost3.append(AUC)
295
                    flag = 1
296
297
            if flag == 1:
298
                costtr.append(torch.mean(epoch_cost4))
299
                auctr.append(np.mean(epoch_cost3))
300
                print('Iter-{}; Total loss: {:.4}'.format(it, loss))
301
302
            with torch.no_grad():
303
304
                AutoencoderE.eval()
305
                AutoencoderM.eval()
306
                AutoencoderC.eval()
307
                Clas.eval()
308
309
                ZET = AutoencoderE(TX_testE)
310
                ZMT = AutoencoderM(TX_testM)
311
                ZCT = AutoencoderC(TX_testC)
312
313
                ZTT = torch.cat((ZET, ZMT, ZCT), 1)
314
                ZTT = F.normalize(ZTT, p=2, dim=0)
315
316
                PredT = Clas(ZTT)
317
                lossT = C_loss(PredT,ty_testE.view(-1,1))         
318
319
                y_truet = ty_testE.view(-1,1)
320
                y_predt = PredT
321
                AUCt = roc_auc_score(y_truet.detach().numpy(),y_predt.detach().numpy())
322
323
                costts.append(lossT)
324
                aucts.append(AUCt)
325
                
326
        plt.plot(np.squeeze(costtr), '-r',np.squeeze(costts), '-b')
327
        plt.ylabel('Total cost')
328
        plt.xlabel('iterations (per tens)')
329
330
        title = 'Cost GemcitabineT iter = {}, fold = {}, mb_size = {},  hz_dim[1,2] = ({},{}), lr[E,M,C] = ({}, {}, {}), epoch = {}, wd = {}, lrCL = {}, rate4 = {}'.\
331
                      format(iters, k, mbs, hdm, zdm , lre, lrm, lrc, epch, wd, lrCL, rate)
332
333
        plt.suptitle(title)
334
        plt.savefig(save_results_to + title + '.png', dpi = 150)
335
        plt.close()
336
337
        plt.plot(np.squeeze(auctr), '-r',np.squeeze(aucts), '-b')
338
        plt.ylabel('AUC')
339
        plt.xlabel('iterations (per tens)')
340
341
        title = 'AUC GemcitabineT iter = {}, fold = {}, mb_size = {},  hz_dim[1,2] = ({},{}), lr[E,M,C] = ({}, {}, {}), epoch = {}, wd = {}, lrCL = {}, rate4 = {}'.\
342
                      format(iters, k, mbs, hdm, zdm , lre, lrm, lrc, epch, wd, lrCL, rate)      
343
344
        plt.suptitle(title)
345
        plt.savefig(save_results_to + title + '.png', dpi = 150)
346
        plt.close()