|
a |
|
b/Cross validation/MOLI only classifier/GemcitabinePDX_cvClassifierNetv9_ScriptCPU.py |
|
|
1 |
import torch |
|
|
2 |
import torch.nn as nn |
|
|
3 |
import torch.nn.functional as F |
|
|
4 |
import torch.optim as optim |
|
|
5 |
import numpy as np |
|
|
6 |
import matplotlib |
|
|
7 |
matplotlib.use('Agg') |
|
|
8 |
import matplotlib.pyplot as plt |
|
|
9 |
import matplotlib.gridspec as gridspec |
|
|
10 |
import pandas as pd |
|
|
11 |
import math |
|
|
12 |
import sklearn.preprocessing as sk |
|
|
13 |
import seaborn as sns |
|
|
14 |
from sklearn import metrics |
|
|
15 |
from sklearn.feature_selection import VarianceThreshold |
|
|
16 |
from sklearn.model_selection import train_test_split |
|
|
17 |
from torch.utils.data.sampler import WeightedRandomSampler |
|
|
18 |
from sklearn.metrics import roc_auc_score |
|
|
19 |
from sklearn.metrics import average_precision_score |
|
|
20 |
import random |
|
|
21 |
from sklearn.model_selection import StratifiedKFold |
|
|
22 |
|
|
|
23 |
save_results_to = '/home/hnoghabi/CVClassifierResultsv9/Gemcitabine/' |
|
|
24 |
max_iter = 50 |
|
|
25 |
torch.manual_seed(42) |
|
|
26 |
|
|
|
27 |
# Load Mutation |
|
|
28 |
GDSCE = pd.read_csv("GDSC_exprs.Gemcitabine.eb_with.PDX_exprs.Gemcitabine.tsv", sep = "\t", index_col=0, decimal = ",") |
|
|
29 |
GDSCE = pd.DataFrame.transpose(GDSCE) |
|
|
30 |
# Load GDSC response |
|
|
31 |
GDSCR = pd.read_csv("GDSC_response.Gemcitabine.tsv", sep = "\t", index_col=0, decimal = ",") |
|
|
32 |
|
|
|
33 |
PDXE = pd.read_csv("PDX_exprs.Gemcitabine.eb_with.GDSC_exprs.Gemcitabine.tsv", sep = "\t", index_col=0, decimal = ",") |
|
|
34 |
PDXE = pd.DataFrame.transpose(PDXE) |
|
|
35 |
|
|
|
36 |
PDXM = pd.read_csv("PDX_mutations.Gemcitabine.tsv", sep = "\t", index_col=0, decimal = ".") |
|
|
37 |
PDXM = pd.DataFrame.transpose(PDXM) |
|
|
38 |
|
|
|
39 |
PDXC = pd.read_csv("PDX_CNA.Gemcitabine.tsv", sep = "\t", index_col=0, decimal = ".") |
|
|
40 |
PDXC = pd.DataFrame.transpose(PDXC) |
|
|
41 |
|
|
|
42 |
GDSCM = pd.read_csv("GDSC_mutations.Gemcitabine.tsv", sep = "\t", index_col=0, decimal = ".") |
|
|
43 |
GDSCM = pd.DataFrame.transpose(GDSCM) |
|
|
44 |
|
|
|
45 |
GDSCC = pd.read_csv("GDSC_CNA.Gemcitabine.tsv", sep = "\t", index_col=0, decimal = ".") |
|
|
46 |
GDSCC.drop_duplicates(keep='last') |
|
|
47 |
PDXC = PDXC.loc[:,~PDXC.columns.duplicated()] |
|
|
48 |
GDSCC = pd.DataFrame.transpose(GDSCC) |
|
|
49 |
selector = VarianceThreshold(0.05) |
|
|
50 |
selector.fit_transform(GDSCE) |
|
|
51 |
GDSCE = GDSCE[GDSCE.columns[selector.get_support(indices=True)]] |
|
|
52 |
|
|
|
53 |
PDXC = PDXC.fillna(0) |
|
|
54 |
PDXC[PDXC != 0.0] = 1 |
|
|
55 |
PDXM = PDXM.fillna(0) |
|
|
56 |
PDXM[PDXM != 0.0] = 1 |
|
|
57 |
GDSCM = GDSCM.fillna(0) |
|
|
58 |
GDSCM[GDSCM != 0.0] = 1 |
|
|
59 |
GDSCC = GDSCC.fillna(0) |
|
|
60 |
GDSCC[GDSCC != 0.0] = 1 |
|
|
61 |
|
|
|
62 |
ls = GDSCE.columns.intersection(GDSCM.columns) |
|
|
63 |
ls = ls.intersection(GDSCC.columns) |
|
|
64 |
ls = ls.intersection(PDXE.columns) |
|
|
65 |
ls = ls.intersection(PDXM.columns) |
|
|
66 |
ls = ls.intersection(PDXC.columns) |
|
|
67 |
ls2 = GDSCE.index.intersection(GDSCM.index) |
|
|
68 |
ls2 = ls2.intersection(GDSCC.index) |
|
|
69 |
ls3 = PDXE.index.intersection(PDXM.index) |
|
|
70 |
ls3 = ls3.intersection(PDXC.index) |
|
|
71 |
ls = pd.unique(ls) |
|
|
72 |
|
|
|
73 |
PDXE = PDXE.loc[ls3,ls] |
|
|
74 |
PDXM = PDXM.loc[ls3,ls] |
|
|
75 |
PDXC = PDXC.loc[ls3,ls] |
|
|
76 |
GDSCE = GDSCE.loc[ls2,ls] |
|
|
77 |
GDSCM = GDSCM.loc[ls2,ls] |
|
|
78 |
GDSCC = GDSCC.loc[ls2,ls] |
|
|
79 |
|
|
|
80 |
GDSCR.loc[GDSCR.iloc[:,0] == 'R'] = 0 |
|
|
81 |
GDSCR.loc[GDSCR.iloc[:,0] == 'S'] = 1 |
|
|
82 |
GDSCR.columns = ['targets'] |
|
|
83 |
GDSCR = GDSCR.loc[ls2,:] |
|
|
84 |
|
|
|
85 |
PDXR = pd.read_csv("PDX_response.Gemcitabine.tsv", sep = "\t", index_col=0, decimal = ",") |
|
|
86 |
PDXR.loc[PDXR.iloc[:,0] == 'R'] = 0 |
|
|
87 |
PDXR.loc[PDXR.iloc[:,0] == 'S'] = 1 |
|
|
88 |
|
|
|
89 |
Y = GDSCR['targets'].values |
|
|
90 |
|
|
|
91 |
ls_mb_size = [32, 62] |
|
|
92 |
ls_h_dim = [1024, 512, 256, 128, 64, 32, 16] |
|
|
93 |
ls_z_dim = [128, 64, 32, 16] |
|
|
94 |
ls_marg = [0.5, 1, 1.5, 2, 2.5] |
|
|
95 |
ls_lr = [0.5, 0.1, 0.05, 0.01, 0.001, 0.005, 0.0005, 0.0001,0.00005, 0.00001] |
|
|
96 |
ls_epoch = [20, 50, 10, 15, 30, 40, 60, 70, 80, 90, 100] |
|
|
97 |
ls_rate = [0.3, 0.4, 0.5, 0.6, 0.7, 0.8] |
|
|
98 |
ls_wd = [0.01, 0.001, 0.1, 0.0001] |
|
|
99 |
|
|
|
100 |
skf = StratifiedKFold(n_splits=5, random_state=42) |
|
|
101 |
|
|
|
102 |
for iters in range(max_iter): |
|
|
103 |
k = 0 |
|
|
104 |
mbs = random.choice(ls_mb_size) |
|
|
105 |
hdm = random.choice(ls_h_dim) |
|
|
106 |
zdm = random.choice(ls_z_dim) |
|
|
107 |
lre = random.choice(ls_lr) |
|
|
108 |
lrm = random.choice(ls_lr) |
|
|
109 |
lrc = random.choice(ls_lr) |
|
|
110 |
lrCL = random.choice(ls_lr) |
|
|
111 |
epch = random.choice(ls_epoch) |
|
|
112 |
wd = random.choice(ls_wd) |
|
|
113 |
rate = random.choice(ls_rate) |
|
|
114 |
|
|
|
115 |
for train_index, test_index in skf.split(GDSCE.values, Y): |
|
|
116 |
k = k + 1 |
|
|
117 |
X_trainE = GDSCE.values[train_index,:] |
|
|
118 |
X_testE = GDSCE.values[test_index,:] |
|
|
119 |
X_trainM = GDSCM.values[train_index,:] |
|
|
120 |
X_testM = GDSCM.values[test_index,:] |
|
|
121 |
X_trainC = GDSCC.values[train_index,:] |
|
|
122 |
X_testC = GDSCM.values[test_index,:] |
|
|
123 |
y_trainE = Y[train_index] |
|
|
124 |
y_testE = Y[test_index] |
|
|
125 |
|
|
|
126 |
scalerGDSC = sk.StandardScaler() |
|
|
127 |
scalerGDSC.fit(X_trainE) |
|
|
128 |
X_trainE = scalerGDSC.transform(X_trainE) |
|
|
129 |
X_testE = scalerGDSC.transform(X_testE) |
|
|
130 |
|
|
|
131 |
X_trainM = np.nan_to_num(X_trainM) |
|
|
132 |
X_trainC = np.nan_to_num(X_trainC) |
|
|
133 |
X_testM = np.nan_to_num(X_testM) |
|
|
134 |
X_testC = np.nan_to_num(X_testC) |
|
|
135 |
|
|
|
136 |
TX_testE = torch.FloatTensor(X_testE) |
|
|
137 |
TX_testM = torch.FloatTensor(X_testM) |
|
|
138 |
TX_testC = torch.FloatTensor(X_testC) |
|
|
139 |
ty_testE = torch.FloatTensor(y_testE.astype(int)) |
|
|
140 |
|
|
|
141 |
#Train |
|
|
142 |
class_sample_count = np.array([len(np.where(y_trainE==t)[0]) for t in np.unique(y_trainE)]) |
|
|
143 |
weight = 1. / class_sample_count |
|
|
144 |
samples_weight = np.array([weight[t] for t in y_trainE]) |
|
|
145 |
|
|
|
146 |
samples_weight = torch.from_numpy(samples_weight) |
|
|
147 |
sampler = WeightedRandomSampler(samples_weight.type('torch.DoubleTensor'), len(samples_weight), replacement=True) |
|
|
148 |
|
|
|
149 |
mb_size = mbs |
|
|
150 |
|
|
|
151 |
trainDataset = torch.utils.data.TensorDataset(torch.FloatTensor(X_trainE), torch.FloatTensor(X_trainM), |
|
|
152 |
torch.FloatTensor(X_trainC), torch.FloatTensor(y_trainE.astype(int))) |
|
|
153 |
|
|
|
154 |
trainLoader = torch.utils.data.DataLoader(dataset = trainDataset, batch_size=mb_size, shuffle=False, num_workers=1, sampler = sampler) |
|
|
155 |
|
|
|
156 |
n_sampE, IE_dim = X_trainE.shape |
|
|
157 |
n_sampM, IM_dim = X_trainM.shape |
|
|
158 |
n_sampC, IC_dim = X_trainC.shape |
|
|
159 |
|
|
|
160 |
h_dim = hdm |
|
|
161 |
Z_dim = zdm |
|
|
162 |
Z_in = h_dim + h_dim + h_dim |
|
|
163 |
lrE = lre |
|
|
164 |
lrM = lrm |
|
|
165 |
lrC = lrc |
|
|
166 |
epoch = epch |
|
|
167 |
|
|
|
168 |
costtr = [] |
|
|
169 |
auctr = [] |
|
|
170 |
costts = [] |
|
|
171 |
aucts = [] |
|
|
172 |
|
|
|
173 |
class AEE(nn.Module): |
|
|
174 |
def __init__(self): |
|
|
175 |
super(AEE, self).__init__() |
|
|
176 |
self.EnE = torch.nn.Sequential( |
|
|
177 |
nn.Linear(IE_dim, h_dim), |
|
|
178 |
nn.BatchNorm1d(h_dim), |
|
|
179 |
nn.ReLU(), |
|
|
180 |
nn.Dropout()) |
|
|
181 |
def forward(self, x): |
|
|
182 |
output = self.EnE(x) |
|
|
183 |
return output |
|
|
184 |
|
|
|
185 |
class AEM(nn.Module): |
|
|
186 |
def __init__(self): |
|
|
187 |
super(AEM, self).__init__() |
|
|
188 |
self.EnM = torch.nn.Sequential( |
|
|
189 |
nn.Linear(IM_dim, h_dim), |
|
|
190 |
nn.BatchNorm1d(h_dim), |
|
|
191 |
nn.ReLU(), |
|
|
192 |
nn.Dropout()) |
|
|
193 |
def forward(self, x): |
|
|
194 |
output = self.EnM(x) |
|
|
195 |
return output |
|
|
196 |
|
|
|
197 |
|
|
|
198 |
class AEC(nn.Module): |
|
|
199 |
def __init__(self): |
|
|
200 |
super(AEC, self).__init__() |
|
|
201 |
self.EnC = torch.nn.Sequential( |
|
|
202 |
nn.Linear(IM_dim, h_dim), |
|
|
203 |
nn.BatchNorm1d(h_dim), |
|
|
204 |
nn.ReLU(), |
|
|
205 |
nn.Dropout()) |
|
|
206 |
def forward(self, x): |
|
|
207 |
output = self.EnC(x) |
|
|
208 |
return output |
|
|
209 |
class Classifier(nn.Module): |
|
|
210 |
def __init__(self): |
|
|
211 |
super(Classifier, self).__init__() |
|
|
212 |
self.FC = torch.nn.Sequential( |
|
|
213 |
nn.Linear(Z_in, Z_dim), |
|
|
214 |
nn.ReLU(), |
|
|
215 |
nn.Dropout(rate), |
|
|
216 |
nn.Linear(Z_dim, 1), |
|
|
217 |
nn.Dropout(rate), |
|
|
218 |
nn.Sigmoid()) |
|
|
219 |
def forward(self, x): |
|
|
220 |
return self.FC(x) |
|
|
221 |
|
|
|
222 |
torch.cuda.manual_seed_all(42) |
|
|
223 |
|
|
|
224 |
AutoencoderE = AEE() |
|
|
225 |
AutoencoderM = AEM() |
|
|
226 |
AutoencoderC = AEC() |
|
|
227 |
|
|
|
228 |
solverE = optim.Adagrad(AutoencoderE.parameters(), lr=lrE) |
|
|
229 |
solverM = optim.Adagrad(AutoencoderM.parameters(), lr=lrM) |
|
|
230 |
solverC = optim.Adagrad(AutoencoderC.parameters(), lr=lrC) |
|
|
231 |
|
|
|
232 |
Clas = Classifier() |
|
|
233 |
SolverClass = optim.Adagrad(Clas.parameters(), lr=lrCL, weight_decay = wd) |
|
|
234 |
C_loss = torch.nn.BCELoss() |
|
|
235 |
|
|
|
236 |
for it in range(epoch): |
|
|
237 |
|
|
|
238 |
epoch_cost4 = 0 |
|
|
239 |
epoch_cost3 = [] |
|
|
240 |
num_minibatches = int(n_sampE / mb_size) |
|
|
241 |
|
|
|
242 |
for i, (dataE, dataM, dataC, target) in enumerate(trainLoader): |
|
|
243 |
flag = 0 |
|
|
244 |
AutoencoderE.train() |
|
|
245 |
AutoencoderM.train() |
|
|
246 |
AutoencoderC.train() |
|
|
247 |
Clas.train() |
|
|
248 |
|
|
|
249 |
if torch.mean(target)!=0. and torch.mean(target)!=1.: |
|
|
250 |
|
|
|
251 |
ZEX = AutoencoderE(dataE) |
|
|
252 |
ZMX = AutoencoderM(dataM) |
|
|
253 |
ZCX = AutoencoderC(dataC) |
|
|
254 |
|
|
|
255 |
ZT = torch.cat((ZEX, ZMX, ZCX), 1) |
|
|
256 |
ZT = F.normalize(ZT, p=2, dim=0) |
|
|
257 |
|
|
|
258 |
Pred = Clas(ZT) |
|
|
259 |
loss = C_loss(Pred,target.view(-1,1)) |
|
|
260 |
|
|
|
261 |
y_true = target.view(-1,1) |
|
|
262 |
y_pred = Pred |
|
|
263 |
AUC = roc_auc_score(y_true.detach().numpy(),y_pred.detach().numpy()) |
|
|
264 |
|
|
|
265 |
solverE.zero_grad() |
|
|
266 |
solverM.zero_grad() |
|
|
267 |
solverC.zero_grad() |
|
|
268 |
SolverClass.zero_grad() |
|
|
269 |
|
|
|
270 |
loss.backward() |
|
|
271 |
|
|
|
272 |
solverE.step() |
|
|
273 |
solverM.step() |
|
|
274 |
solverC.step() |
|
|
275 |
SolverClass.step() |
|
|
276 |
|
|
|
277 |
epoch_cost4 = epoch_cost4 + (loss / num_minibatches) |
|
|
278 |
epoch_cost3.append(AUC) |
|
|
279 |
flag = 1 |
|
|
280 |
|
|
|
281 |
if flag == 1: |
|
|
282 |
costtr.append(torch.mean(epoch_cost4)) |
|
|
283 |
auctr.append(np.mean(epoch_cost3)) |
|
|
284 |
print('Iter-{}; Total loss: {:.4}'.format(it, loss)) |
|
|
285 |
|
|
|
286 |
with torch.no_grad(): |
|
|
287 |
|
|
|
288 |
AutoencoderE.eval() |
|
|
289 |
AutoencoderM.eval() |
|
|
290 |
AutoencoderC.eval() |
|
|
291 |
Clas.eval() |
|
|
292 |
|
|
|
293 |
ZET = AutoencoderE(TX_testE) |
|
|
294 |
ZMT = AutoencoderM(TX_testM) |
|
|
295 |
ZCT = AutoencoderC(TX_testC) |
|
|
296 |
|
|
|
297 |
ZTT = torch.cat((ZET, ZMT, ZCT), 1) |
|
|
298 |
ZTT = F.normalize(ZTT, p=2, dim=0) |
|
|
299 |
|
|
|
300 |
PredT = Clas(ZTT) |
|
|
301 |
lossT = C_loss(PredT,ty_testE.view(-1,1)) |
|
|
302 |
|
|
|
303 |
y_truet = ty_testE.view(-1,1) |
|
|
304 |
y_predt = PredT |
|
|
305 |
AUCt = roc_auc_score(y_truet.detach().numpy(),y_predt.detach().numpy()) |
|
|
306 |
|
|
|
307 |
costts.append(lossT) |
|
|
308 |
aucts.append(AUCt) |
|
|
309 |
|
|
|
310 |
plt.plot(np.squeeze(costtr), '-r',np.squeeze(costts), '-b') |
|
|
311 |
plt.ylabel('Total cost') |
|
|
312 |
plt.xlabel('iterations (per tens)') |
|
|
313 |
|
|
|
314 |
title = 'Cost Gemcitabine iter = {}, fold = {}, mb_size = {}, hz_dim[1,2] = ({},{}), lr[E,M,C] = ({}, {}, {}), epoch = {}, wd = {}, lrCL = {}, rate4 = {}'.\ |
|
|
315 |
format(iters, k, mbs, hdm, zdm , lre, lrm, lrc, epch, wd, lrCL, rate) |
|
|
316 |
|
|
|
317 |
plt.suptitle(title) |
|
|
318 |
plt.savefig(save_results_to + title + '.png', dpi = 150) |
|
|
319 |
plt.close() |
|
|
320 |
|
|
|
321 |
plt.plot(np.squeeze(auctr), '-r',np.squeeze(aucts), '-b') |
|
|
322 |
plt.ylabel('AUC') |
|
|
323 |
plt.xlabel('iterations (per tens)') |
|
|
324 |
|
|
|
325 |
title = 'AUC Gemcitabine iter = {}, fold = {}, mb_size = {}, hz_dim[1,2] = ({},{}), lr[E,M,C] = ({}, {}, {}), epoch = {}, wd = {}, lrCL = {}, rate4 = {}'.\ |
|
|
326 |
format(iters, k, mbs, hdm, zdm , lre, lrm, lrc, epch, wd, lrCL, rate) |
|
|
327 |
|
|
|
328 |
plt.suptitle(title) |
|
|
329 |
plt.savefig(save_results_to + title + '.png', dpi = 150) |
|
|
330 |
plt.close() |