a b/Cross validation/MOLI Complete/Gemcitabine_cvSoftTripletClassifierNetv16_Script.py
1
import torch 
2
import torch.nn as nn
3
import torch.nn.functional as F
4
import torch.optim as optim
5
import numpy as np
6
import matplotlib
7
matplotlib.use('Agg')
8
import matplotlib.pyplot as plt
9
import matplotlib.gridspec as gridspec
10
import pandas as pd
11
import math
12
import sklearn.preprocessing as sk
13
import seaborn as sns
14
from sklearn import metrics
15
from sklearn.feature_selection import VarianceThreshold
16
from sklearn.model_selection import train_test_split
17
from utils import AllTripletSelector,HardestNegativeTripletSelector, RandomNegativeTripletSelector, SemihardNegativeTripletSelector # Strategies for selecting triplets within a minibatch
18
from metrics import AverageNonzeroTripletsMetric
19
from torch.utils.data.sampler import WeightedRandomSampler
20
from sklearn.metrics import roc_auc_score
21
from sklearn.metrics import average_precision_score
22
import random
23
from random import randint
24
from sklearn.model_selection import StratifiedKFold
25
26
save_results_to = '/home/hnoghabi/SoftClassifierTripNetv16/Gemcitabine/'
27
max_iter = 50
28
torch.manual_seed(42)
29
30
GDSCE = pd.read_csv("GDSC_exprs.Gemcitabine.eb_with.PDX_exprs.Gemcitabine.tsv", sep = "\t", index_col=0, decimal = ",")
31
GDSCE = pd.DataFrame.transpose(GDSCE)
32
# Load GDSC response
33
GDSCR = pd.read_csv("GDSC_response.Gemcitabine.tsv", sep = "\t", index_col=0, decimal = ",")
34
35
PDXE = pd.read_csv("PDX_exprs.Gemcitabine.eb_with.GDSC_exprs.Gemcitabine.tsv", sep = "\t", index_col=0, decimal = ",")
36
PDXE = pd.DataFrame.transpose(PDXE)
37
38
PDXM = pd.read_csv("PDX_mutations.Gemcitabine.tsv", sep = "\t", index_col=0, decimal = ".")
39
PDXM = pd.DataFrame.transpose(PDXM)
40
41
PDXC = pd.read_csv("PDX_CNA.Gemcitabine.tsv", sep = "\t", index_col=0, decimal = ".")
42
PDXC = pd.DataFrame.transpose(PDXC)
43
44
GDSCM = pd.read_csv("GDSC_mutations.Gemcitabine.tsv", sep = "\t", index_col=0, decimal = ".")
45
GDSCM = pd.DataFrame.transpose(GDSCM)
46
47
GDSCC = pd.read_csv("GDSC_CNA.Gemcitabine.tsv", sep = "\t", index_col=0, decimal = ".")
48
GDSCC.drop_duplicates(keep='last')
49
PDXC = PDXC.loc[:,~PDXC.columns.duplicated()]
50
GDSCC = pd.DataFrame.transpose(GDSCC)
51
selector = VarianceThreshold(0.05)
52
selector.fit_transform(GDSCE)
53
GDSCE = GDSCE[GDSCE.columns[selector.get_support(indices=True)]]
54
55
PDXC = PDXC.fillna(0)
56
PDXC[PDXC != 0.0] = 1
57
PDXM = PDXM.fillna(0)
58
PDXM[PDXM != 0.0] = 1
59
GDSCM = GDSCM.fillna(0)
60
GDSCM[GDSCM != 0.0] = 1
61
GDSCC = GDSCC.fillna(0)
62
GDSCC[GDSCC != 0.0] = 1
63
64
ls = GDSCE.columns.intersection(GDSCM.columns)
65
ls = ls.intersection(GDSCC.columns)
66
ls = ls.intersection(PDXE.columns)
67
ls = ls.intersection(PDXM.columns)
68
ls = ls.intersection(PDXC.columns)
69
ls2 = GDSCE.index.intersection(GDSCM.index)
70
ls2 = ls2.intersection(GDSCC.index)
71
ls3 = PDXE.index.intersection(PDXM.index)
72
ls3 = ls3.intersection(PDXC.index)
73
ls = pd.unique(ls)
74
75
PDXE = PDXE.loc[ls3,ls]
76
PDXM = PDXM.loc[ls3,ls]
77
PDXC = PDXC.loc[ls3,ls]
78
GDSCE = GDSCE.loc[ls2,ls]
79
GDSCM = GDSCM.loc[ls2,ls]
80
GDSCC = GDSCC.loc[ls2,ls]
81
82
GDSCR.loc[GDSCR.iloc[:,0] == 'R'] = 0
83
GDSCR.loc[GDSCR.iloc[:,0] == 'S'] = 1
84
GDSCR.columns = ['targets']
85
GDSCR = GDSCR.loc[ls2,:]
86
87
ls_mb_size = [13, 30, 64]
88
ls_h_dim = [1023, 512, 256, 128, 64, 32, 16]
89
ls_marg = [0.5, 1, 1.5, 2, 2.5]
90
ls_lr = [0.5, 0.1, 0.05, 0.01, 0.001, 0.005, 0.0005, 0.0001,0.00005, 0.00001]
91
ls_epoch = [20, 50, 10, 15, 30, 40, 60, 70, 80, 90, 100]
92
ls_rate = [0.3, 0.4, 0.5, 0.6, 0.7, 0.8]
93
ls_wd = [0.01, 0.001, 0.1, 0.0001]
94
ls_lam = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6]
95
96
Y = GDSCR['targets'].values
97
98
skf = StratifiedKFold(n_splits=5, random_state=42)
99
100
for iters in range(max_iter):
101
    k = 0
102
    mbs = random.choice(ls_mb_size)
103
    hdm1 = random.choice(ls_h_dim)
104
    hdm2 = random.choice(ls_h_dim)
105
    hdm3 = random.choice(ls_h_dim) 
106
    mrg = random.choice(ls_marg)
107
    lre = random.choice(ls_lr)
108
    lrm = random.choice(ls_lr)
109
    lrc = random.choice(ls_lr)
110
    lrCL = random.choice(ls_lr)
111
    epch = random.choice(ls_epoch)
112
    rate1 = random.choice(ls_rate)
113
    rate2 = random.choice(ls_rate)
114
    rate3 = random.choice(ls_rate)
115
    rate4 = random.choice(ls_rate)    
116
    wd = random.choice(ls_wd)   
117
    lam = random.choice(ls_lam)   
118
119
    for train_index, test_index in skf.split(GDSCE.values, Y):
120
        k = k + 1
121
        X_trainE = GDSCE.values[train_index,:]
122
        X_testE =  GDSCE.values[test_index,:]
123
        X_trainM = GDSCM.values[train_index,:]
124
        X_testM = GDSCM.values[test_index,:]
125
        X_trainC = GDSCC.values[train_index,:]
126
        X_testC = GDSCM.values[test_index,:]
127
        y_trainE = Y[train_index]
128
        y_testE = Y[test_index]
129
        
130
        scalerGDSC = sk.StandardScaler()
131
        scalerGDSC.fit(X_trainE)
132
        X_trainE = scalerGDSC.transform(X_trainE)
133
        X_testE = scalerGDSC.transform(X_testE)
134
135
        X_trainM = np.nan_to_num(X_trainM)
136
        X_trainC = np.nan_to_num(X_trainC)
137
        X_testM = np.nan_to_num(X_testM)
138
        X_testC = np.nan_to_num(X_testC)
139
        
140
        TX_testE = torch.FloatTensor(X_testE)
141
        TX_testM = torch.FloatTensor(X_testM)
142
        TX_testC = torch.FloatTensor(X_testC)
143
        ty_testE = torch.FloatTensor(y_testE.astype(int))
144
        
145
        #Train
146
        class_sample_count = np.array([len(np.where(y_trainE==t)[0]) for t in np.unique(y_trainE)])
147
        weight = 1. / class_sample_count
148
        samples_weight = np.array([weight[t] for t in y_trainE])
149
150
        samples_weight = torch.from_numpy(samples_weight)
151
        sampler = WeightedRandomSampler(samples_weight.type('torch.DoubleTensor'), len(samples_weight), replacement=True)
152
153
        mb_size = mbs
154
155
        trainDataset = torch.utils.data.TensorDataset(torch.FloatTensor(X_trainE), torch.FloatTensor(X_trainM), 
156
                                                      torch.FloatTensor(X_trainC), torch.FloatTensor(y_trainE.astype(int)))
157
158
        trainLoader = torch.utils.data.DataLoader(dataset = trainDataset, batch_size=mb_size, shuffle=False, num_workers=1, sampler = sampler)
159
160
        n_sampE, IE_dim = X_trainE.shape
161
        n_sampM, IM_dim = X_trainM.shape
162
        n_sampC, IC_dim = X_trainC.shape
163
164
        h_dim1 = hdm1
165
        h_dim2 = hdm2
166
        h_dim3 = hdm3        
167
        Z_in = h_dim1 + h_dim2 + h_dim3
168
        marg = mrg
169
        lrE = lre
170
        lrM = lrm
171
        lrC = lrc
172
        epoch = epch
173
174
        costtr = []
175
        auctr = []
176
        costts = []
177
        aucts = []
178
179
        triplet_selector = RandomNegativeTripletSelector(marg)
180
        triplet_selector2 = AllTripletSelector()
181
182
        class AEE(nn.Module):
183
            def __init__(self):
184
                super(AEE, self).__init__()
185
                self.EnE = torch.nn.Sequential(
186
                    nn.Linear(IE_dim, h_dim1),
187
                    nn.BatchNorm1d(h_dim1),
188
                    nn.ReLU(),
189
                    nn.Dropout(rate1))
190
            def forward(self, x):
191
                output = self.EnE(x)
192
                return output
193
194
        class AEM(nn.Module):
195
            def __init__(self):
196
                super(AEM, self).__init__()
197
                self.EnM = torch.nn.Sequential(
198
                    nn.Linear(IM_dim, h_dim2),
199
                    nn.BatchNorm1d(h_dim2),
200
                    nn.ReLU(),
201
                    nn.Dropout(rate2))
202
            def forward(self, x):
203
                output = self.EnM(x)
204
                return output    
205
206
207
        class AEC(nn.Module):
208
            def __init__(self):
209
                super(AEC, self).__init__()
210
                self.EnC = torch.nn.Sequential(
211
                    nn.Linear(IM_dim, h_dim3),
212
                    nn.BatchNorm1d(h_dim3),
213
                    nn.ReLU(),
214
                    nn.Dropout(rate3))
215
            def forward(self, x):
216
                output = self.EnC(x)
217
                return output    
218
219
        class OnlineTriplet(nn.Module):
220
            def __init__(self, marg, triplet_selector):
221
                super(OnlineTriplet, self).__init__()
222
                self.marg = marg
223
                self.triplet_selector = triplet_selector
224
            def forward(self, embeddings, target):
225
                triplets = self.triplet_selector.get_triplets(embeddings, target)
226
                return triplets
227
228
        class OnlineTestTriplet(nn.Module):
229
            def __init__(self, marg, triplet_selector):
230
                super(OnlineTestTriplet, self).__init__()
231
                self.marg = marg
232
                self.triplet_selector = triplet_selector
233
            def forward(self, embeddings, target):
234
                triplets = self.triplet_selector.get_triplets(embeddings, target)
235
                return triplets    
236
237
        class Classifier(nn.Module):
238
            def __init__(self):
239
                super(Classifier, self).__init__()
240
                self.FC = torch.nn.Sequential(
241
                    nn.Linear(Z_in, 1),
242
                    nn.Dropout(rate4),
243
                    nn.Sigmoid())
244
            def forward(self, x):
245
                return self.FC(x)
246
247
        torch.cuda.manual_seed_all(42)
248
249
        AutoencoderE = AEE()
250
        AutoencoderM = AEM()
251
        AutoencoderC = AEC()
252
253
        solverE = optim.Adagrad(AutoencoderE.parameters(), lr=lrE)
254
        solverM = optim.Adagrad(AutoencoderM.parameters(), lr=lrM)
255
        solverC = optim.Adagrad(AutoencoderC.parameters(), lr=lrC)
256
257
        trip_criterion = torch.nn.TripletMarginLoss(margin=marg, p=2)
258
        TripSel = OnlineTriplet(marg, triplet_selector)
259
        TripSel2 = OnlineTestTriplet(marg, triplet_selector2)
260
261
        Clas = Classifier()
262
        SolverClass = optim.Adagrad(Clas.parameters(), lr=lrCL, weight_decay = wd)
263
        C_loss = torch.nn.BCELoss()
264
265
        for it in range(epoch):
266
267
            epoch_cost4 = 0
268
            epoch_cost3 = []
269
            num_minibatches = int(n_sampE / mb_size) 
270
271
            for i, (dataE, dataM, dataC, target) in enumerate(trainLoader):
272
                flag = 0
273
                AutoencoderE.train()
274
                AutoencoderM.train()
275
                AutoencoderC.train()
276
                Clas.train()
277
278
                if torch.mean(target)!=0. and torch.mean(target)!=1.: 
279
                    ZEX = AutoencoderE(dataE)
280
                    ZMX = AutoencoderM(dataM)
281
                    ZCX = AutoencoderC(dataC)
282
283
                    ZT = torch.cat((ZEX, ZMX, ZCX), 1)
284
                    ZT = F.normalize(ZT, p=2, dim=0)
285
                    Pred = Clas(ZT)
286
287
                    Triplets = TripSel2(ZT, target)
288
                    loss = lam * trip_criterion(ZT[Triplets[:,0],:],ZT[Triplets[:,1],:],ZT[Triplets[:,2],:]) + C_loss(Pred,target.view(-1,1))     
289
290
                    y_true = target.view(-1,1)
291
                    y_pred = Pred
292
                    AUC = roc_auc_score(y_true.detach().numpy(),y_pred.detach().numpy()) 
293
294
                    solverE.zero_grad()
295
                    solverM.zero_grad()
296
                    solverC.zero_grad()
297
                    SolverClass.zero_grad()
298
299
                    loss.backward()
300
301
                    solverE.step()
302
                    solverM.step()
303
                    solverC.step()
304
                    SolverClass.step()
305
306
                    epoch_cost4 = epoch_cost4 + (loss / num_minibatches)
307
                    epoch_cost3.append(AUC)
308
                    flag = 1
309
310
            if flag == 1:
311
                costtr.append(torch.mean(epoch_cost4))
312
                auctr.append(np.mean(epoch_cost3))
313
                print('Iter-{}; Total loss: {:.4}'.format(it, loss))
314
315
            with torch.no_grad():
316
317
                AutoencoderE.eval()
318
                AutoencoderM.eval()
319
                AutoencoderC.eval()
320
                Clas.eval()
321
322
                ZET = AutoencoderE(TX_testE)
323
                ZMT = AutoencoderM(TX_testM)
324
                ZCT = AutoencoderC(TX_testC)
325
326
                ZTT = torch.cat((ZET, ZMT, ZCT), 1)
327
                ZTT = F.normalize(ZTT, p=2, dim=0)
328
                PredT = Clas(ZTT)
329
330
                TripletsT = TripSel2(ZTT, ty_testE)
331
                lossT = lam * trip_criterion(ZTT[TripletsT[:,0],:], ZTT[TripletsT[:,1],:], ZTT[TripletsT[:,2],:]) + C_loss(PredT,ty_testE.view(-1,1))
332
333
                y_truet = ty_testE.view(-1,1)
334
                y_predt = PredT
335
                AUCt = roc_auc_score(y_truet.detach().numpy(),y_predt.detach().numpy())        
336
337
                costts.append(lossT)
338
                aucts.append(AUCt)
339
340
        plt.plot(np.squeeze(costtr), '-r',np.squeeze(costts), '-b')
341
        plt.ylabel('Total cost')
342
        plt.xlabel('iterations (per tens)')
343
344
        title = 'Cost Gemcitabine iter = {}, fold = {}, mb_size = {},  h_dim[1,2,3] = ({},{},{}), marg = {}, lr[E,M,C] = ({}, {}, {}), epoch = {}, rate[1,2,3,4] = ({},{},{},{}), wd = {}, lrCL = {}, lam = {}'.\
345
                      format(iters, k, mbs, hdm1, hdm2, hdm3, mrg, lre, lrm, lrc, epch, rate1, rate2, rate3, rate4, wd, lrCL, lam)
346
347
        plt.suptitle(title)
348
        plt.savefig(save_results_to + title + '.png', dpi = 150)
349
        plt.close()
350
351
        plt.plot(np.squeeze(auctr), '-r',np.squeeze(aucts), '-b')
352
        plt.ylabel('AUC')
353
        plt.xlabel('iterations (per tens)')
354
355
        title = 'AUC Gemcitabine iter = {}, fold = {}, mb_size = {},  h_dim[1,2,3] = ({},{},{}), marg = {}, lr[E,M,C] = ({}, {}, {}), epoch = {}, rate[1,2,3,4] = ({},{},{},{}), wd = {}, lrCL = {}, lam = {}'.\
356
                      format(iters, k, mbs, hdm1, hdm2, hdm3, mrg, lre, lrm, lrc, epch, rate1, rate2, rate3, rate4, wd, lrCL, lam)        
357
358
        plt.suptitle(title)
359
        plt.savefig(save_results_to + title + '.png', dpi = 150)
360
        plt.close()