[a43cea]: / modas / gwas_cmd.py

Download this file

149 lines (139 with data), 7.5 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import pandas as pd
import numpy as np
from sklearn.decomposition import PCA
from rpy2.robjects import pandas2ri
from rpy2.rinterface_lib.embedded import RRuntimeError
import rpy2.robjects as robjects
from rpy2.robjects.packages import importr
from rpy2.rinterface_lib.callbacks import logger as rpy2_logger
import subprocess
import logging
import glob, os
import shutil
import re
pandas2ri.activate()
rpy2_logger.setLevel(logging.ERROR)
rMVP = importr('rMVP')
base = importr('base')
data_table = importr('data.table')
bigmemory = importr('bigmemory')
utils_path = subprocess.check_output('locate modas/utils', shell=True, text=True, encoding='utf-8')
#utils_path = '/'.join(re.search('\n(.*site-packages.*)\n', utils_path).group(1).split('/')[:-1])
utils_path = re.search('\n(.*site-packages.*)\n', utils_path).group(1)
if not utils_path.endswith('utils'):
utils_path = '/'.join(utils_path.split('/')[:-1])
def gemma_cmd(model, geno_prefix, kin_prefix, n, out_prefix):
if model == 'LM':
return utils_path + '/gemma -bfile {0} -lm -o {1}'.format(geno_prefix, out_prefix)
if model == 'MLM':
return utils_path + '/gemma -bfile {0} -k ./output/{1}.cXX.txt -lmm -n {2} -o {3}'.format(geno_prefix, kin_prefix, n, out_prefix)
def rmvp(model, cv_geno_prefix, geno_prefix, omics_phe, threads, out_path):
try:
base.sink('/dev/null')
if model == 'GLM' or model == 'FarmCPU':
if not os.path.exists(cv_geno_prefix + '.pc.desc'):
rMVP.MVP_Data(fileBed=cv_geno_prefix, fileKin=False, filePC=False, out=cv_geno_prefix,
verbose=False)
rMVP.MVP_Data_PC(True, mvp_prefix=cv_geno_prefix, pcs_keep=10, verbose=False)
if model == 'MLM':
if not os.path.exists(cv_geno_prefix + '.kin.desc'):
rMVP.MVP_Data(fileBed=cv_geno_prefix, fileKin=False, filePC=False, out=cv_geno_prefix,
verbose=False)
rMVP.MVP_Data_Kin(True, mvp_prefix=cv_geno_prefix, verbose=False)
if not os.path.exists(geno_prefix + '.geno.desc'):
rMVP.MVP_Data(fileBed=geno_prefix, fileKin=False, filePC=False, out=geno_prefix, verbose=False)
geno = bigmemory.attach_big_matrix(geno_prefix +'.geno.desc')
map_file = pd.read_csv(geno_prefix +'.geno.map', sep='\t')
if model == 'GLM' or model == 'FarmCPU':
Covariates_PC = bigmemory.as_matrix(bigmemory.attach_big_matrix(cv_geno_prefix + '.pc.desc'))
if model == 'MLM':
Kinship = bigmemory.attach_big_matrix(cv_geno_prefix + '.kin.desc')
if model == 'GLM':
# robjects.r('''
# gwas <- function(omics_phe, geno, map_file, Covariates_PC, threads){
# library(rMVP)
# mvp <- MVP(phe=omics_phe, geno=geno, map=map_file, CV.GLM=Covariates_PC, priority='speed', nPC.GLM=5,
# ncpus=threads, maxLoop=10, threshold=0.05, method=c('GLM'), file.output=F, verbose=F)
# res <- cbind(mvp$map, mvp$glm.results)
# return(res)
# }
# ''')
# mvp = robjects.r('gwas')
# res = mvp(omics_phe, geno, map_file, Covariates_PC, threads)
mvp = rMVP.MVP(phe=omics_phe, geno=geno, map=map_file, CV_GLM=Covariates_PC, priority='speed', nPC_GLM=5,
ncpus=threads, maxLoop=10, threshold=0.05, method=['GLM'], file_output=False,
verbose=False)
gwas_res = pd.DataFrame(mvp.rx2('glm.results'), columns=['Effect', 'SE', str(omics_phe.columns[1]) + '.GLM'])
pos = pd.DataFrame(mvp.rx2('map'))
pos.index = gwas_res.index
res = pd.concat([pos, gwas_res], axis=1)
if model == 'FarmCPU':
# robjects.r('''
# gwas <- function(omics_phe, geno, map_file, Covariates_PC, threads){
# library(rMVP)
# mvp <- MVP(phe=omics_phe, geno=geno, map=map_file, CV.GLM=Covariates_PC, priority='speed', nPC.GLM=5,
# ncpus=threads, maxLoop=10, threshold=0.05, method=c('FarmCPU'), method.bin='static', file.output=F, verbose=F)
# res <- cbind(mvp$map, mvp$farmcpu.results)
# return(res)
# }
# ''')
# mvp = robjects.r('gwas')
# res = mvp(omics_phe, geno, map_file, Covariates_PC, threads)
mvp = rMVP.MVP(phe=omics_phe, geno=geno, map=map_file, CV_FarmCPU=Covariates_PC, priority='speed', nPC_FarmCPU=3,
ncpus=threads, maxLoop=10, threshold=0.05, method=['FarmCPU'], file_output=False, method_bin='static',
verbose=True)
gwas_res = pd.DataFrame(mvp.rx2('farmcpu.results'), columns=['Effect', 'SE', str(omics_phe.columns[1]) + '.FarmCPU'])
pos = pd.DataFrame(mvp.rx2('map'))
pos.index = gwas_res.index
res = pd.concat([pos, gwas_res], axis=1)
if model == 'MLM':
# robjects.r('''
# gwas <- function(omics_phe, geno, map_file, Kinship, threads){
# library(rMVP)
# mvp <- MVP(phe=omics_phe, geno=geno, map=map_file, K=Kinship, priority='speed', nPC.GLM=5,
# vc.method='BRENT', ncpus=threads, maxLoop=10, threshold=0.05, method=c('MLM'), file.output=F, verbose=F)
# res <- cbind(mvp$map, mvp$mlm.results)
# return(res)
# }
# ''')
# mvp = robjects.r('gwas')
# res = mvp(omics_phe, geno, map_file, Kinship, threads)
mvp = rMVP.MVP(phe=omics_phe, geno=geno, map=map_file, K=Kinship, priority='speed', vc_method='BRENT',
ncpus=threads, maxLoop=10, threshold=0.05, method=['MLM'], file_output=False,
verbose=False)
gwas_res = pd.DataFrame(mvp.rx2('mlm.results'), columns=['Effect', 'SE', str(omics_phe.columns[1])+'.MLM'])
pos = pd.DataFrame(mvp.rx2('map'))
pos.index = gwas_res.index
res = pd.concat([pos, gwas_res], axis=1)
res.to_csv(out_path.rstrip('/') + '/' + str(omics_phe.columns[1])+'.' + model + '.csv', index=False)
base.sink()
except RRuntimeError:
return 1
except ValueError:
return 1
else:
return 0
def gapit(model, geno, omics_phe, gapit_path):
try:
base.sink('/dev/null')
robjects.r('source("'+gapit_path.rstrip('/')+'/GAPIT.library.R")')
robjects.r('source("'+gapit_path.rstrip('/')+'/gapit_functions.txt")')
robjects.r('''gapit <- function(geno,omics_phe,model){
library(bigsnpr)
g <- snp_readBed(paste(geno,'.bed',sep=''), backingfile=tempfile())
g <- snp_attach(g)
GD <- cbind(g$fam$family.ID,as.data.frame(snp_fastImputeSimple(g$genotypes, method='mode')[]))
names(GD) <- c('Taxa',g$map$marker.ID)
GM <- g$map[c('marker.ID','chromosome','physical.pos')]
names(GM) <- c('Name','Chromosome','Position')
GAPIT(Y=omics_phe, GD=GD, GM=GM, model=model, Major.allele.zero = T, SNP.MAF=0.05)
}''')
GAPIT = robjects.r('gapit')
GAPIT(geno, omics_phe, model)
base.sink()
except RRuntimeError:
return 1
except ValueError:
return 1
else:
return 0