[a43cea]: / modas / coloc.py

Download this file

190 lines (169 with data), 8.7 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import pandas as pd
import numpy as np
import bioframe as bf
from image_match.goldberg import ImageSignature
from pandas_plink import read_plink1_bin
from sklearn.cluster import DBSCAN
from scipy.spatial.distance import squareform
from scipy.cluster.hierarchy import linkage, leaves_list, cut_tree
from joblib import Parallel, delayed
from sklearn.metrics import silhouette_score, calinski_harabasz_score
import resource
import os
resource.setrlimit(resource.RLIMIT_NOFILE, (4096, 4096))
def qtl_cluster(qtl):
qtl.CHR = qtl.CHR.astype(str)
qtl = bf.cluster(qtl, cols=['CHR', 'qtl_start', 'qtl_end'], min_dist=0)
return qtl
def kin(g, top=2):
g = g - g.mean()
K = np.dot(g, g.T)
d = np.diag(K)
DL = np.min(d)
DU = np.max(d)
floor = np.min(K)
K = top * (K - floor) / (DU - floor)
Dmin = top * (DL - floor) / (DU - floor)
dig_index = np.eye(K.shape[0], dtype=bool)
if Dmin < 1:
K[dig_index] = (np.diag(K)-Dmin+1)/((top+1-Dmin)*0.5)
K[~dig_index] = K[~dig_index] * (1 / Dmin)
Omax = np.max(K[~dig_index])
if Omax > top:
K[~dig_index] = K[~dig_index] * (top / Omax)
return K
def get_kin_info(qtl, gwas_dir, geno, pvalue):
var = pd.Series(geno.variant, index=geno.snp)
kin_info = dict()
for phe_name in qtl.phe_name.unique():
fn = gwas_dir+'/tmp_' + phe_name + '_plink.assoc.txt'
if not os.path.exists(fn):
print('Warning: ' + fn + 'is not exist.')
continue
gwas = pd.read_csv(fn, sep='\t')
geno_sub = geno.sel(variant=var.reindex(gwas.loc[gwas.p_wald <= pvalue, 'rs']).dropna().values, drop=True)
geno_sub = pd.DataFrame(geno_sub.values, index=geno_sub.fid, columns=geno_sub.snp)
kin_res = kin(geno_sub)
ril_cluster = linkage(kin_res, method='ward')
idx = leaves_list(ril_cluster)
label = cut_tree(ril_cluster, n_clusters=2)[:, 0]
kin_info[phe_name] = dict([['kin', kin_res], ['idx', idx], ['label', label]])
return kin_info
def get_ril_cluster_idx(kin1, kin2, metric):
score1 = calc_cluster_score(kin1['kin'], kin2['kin'], kin1['label'], metric)
score2 = calc_cluster_score(kin1['kin'], kin2['kin'], kin2['label'], metric)
if metric == 'silhouette':
if score1 > score2:
return kin1['idx']
else:
return kin2['idx']
if metric == 'calinski_harabasz':
if score1 > score2:
return kin1['idx']
else:
return kin2['idx']
def calc_cluster_score(kin1, kin2, label, metric):
if metric == 'silhouette':
from sklearn.metrics import silhouette_score
kin1_score = silhouette_score(kin1, label)
kin2_score = silhouette_score(kin2, label)
elif metric == 'calinski_harabasz':
from sklearn.metrics import calinski_harabasz_score
kin1_score = calinski_harabasz_score(kin1, label)
kin2_score = calinski_harabasz_score(kin2, label)
return np.mean([kin1_score, kin2_score])
def get_signature(g, gis):
# image_limits = gis.crop_image(g,
# lower_percentile=gis.lower_percentile,
# upper_percentile=gis.upper_percentile,
# fix_ratio=gis.fix_ratio)
# x_coords, y_coords = gis.compute_grid_points(g,
# n=gis.n, window=image_limits)
x_coords, y_coords = gis.compute_grid_points(g, n=gis.n)
avg_grey = gis.compute_mean_level(g, x_coords, y_coords, P=gis.P)
diff_mat = gis.compute_differentials(avg_grey,
diagonal_neighbors=gis.diagonal_neighbors)
gis.normalize_and_threshold(diff_mat,
identical_tolerance=gis.identical_tolerance,
n_levels=gis.n_levels)
return np.ravel(diff_mat).astype('int8')
def calc_image_match_score(kin_info, phe_list, metric):
gis = ImageSignature()
score = list()
for _, phe1 in enumerate(phe_list):
for phe2 in phe_list[_+1:]:
idx = get_ril_cluster_idx(kin_info[phe1], kin_info[phe2], metric)
score.append(gis.normalized_distance(get_signature(kin_info[phe1]['kin'][idx, :][:, idx], gis), get_signature(kin_info[phe2]['kin'][idx, :][:, idx], gis)))
score = squareform(score)
return score
def cluster_coloc(kin_info, qtl, c, metric, cls):
qtl_sub = qtl.loc[qtl.cluster==c, :]
if qtl_sub.shape[0] > 1:
phe_name = qtl_sub.phe_name.unique()
trait_dis = calc_image_match_score(kin_info, phe_name, metric)
trait_dis = np.round(trait_dis, 2)
cls.fit(trait_dis)
cls_res = pd.Series(cls.labels_, index=phe_name).to_frame().reset_index()
cls_res.columns = ['phe_name', 'label']
cls_res = cls_res.loc[cls_res.label != -1, :]
if not cls_res.empty:
cls_res['label'] = str(c) + '_' + cls_res.label.astype(str)
return pd.DataFrame(trait_dis, index=phe_name, columns=phe_name), cls_res
else:
return pd.DataFrame(trait_dis, index=phe_name, columns=phe_name), pd.DataFrame()
else:
return pd.DataFrame(), pd.DataFrame()
def trait_coloc(kin_info, qtl, metric, eps, p):
cls = DBSCAN(eps=eps, min_samples=2, metric='precomputed')
# dis = list()
# coloc_res = list()
# coloc_count = 0
# for c in qtl.cluster.unique():
# qtl_sub = qtl.loc[qtl.cluster==c, :]
# if qtl_sub.shape[0] > 1:
# phe_name = qtl_sub.phe_name.unique()
# trait_dis = calc_image_match_score(kin_info, phe_name, metric)
# dis.append(pd.DataFrame(trait_dis, index=phe_name, columns=phe_name))
# cls.fit(trait_dis)
# cls_res = pd.Series(cls.labels_, index=phe_name).to_frame().reset_index()
# cls_res.columns = ['phe_name', 'label']
# cls_res = cls_res.loc[cls_res.label != -1, :]
# if not cls_res.empty:
# cls_count = cls_res['label'].value_counts()
# cls_res['label'] = cls_res['label'].replace(cls_count.index, np.arange(coloc_count + 1, coloc_count + 1 + cls_count.shape[0]))
# coloc_res.append(cls_res)
# coloc_count = coloc_count + cls_count.shape[0]
res = Parallel(n_jobs=p)(delayed(cluster_coloc)(kin_info, qtl, c, metric, cls) for c in qtl.cluster.unique())
coloc_res = [i[1] for i in res]
dis = [i[0] for i in res]
coloc_res = pd.concat(coloc_res, axis=0)
if not coloc_res.empty:
coloc_res_count = coloc_res['label'].value_counts()
coloc_res['label'] = coloc_res['label'].replace(coloc_res_count.index, np.arange(1, coloc_res_count.shape[0] + 1))
coloc_res = pd.merge(qtl.drop(['cluster', 'cluster_start', 'cluster_end'], axis=1), coloc_res, on='phe_name', how='left')
coloc_res = coloc_res.fillna(-1)
coloc_res = coloc_res.loc[coloc_res.label != -1, :]
dis = pd.concat(dis)
dup_index = dis.index[dis.index.duplicated()]
dup_dis = dis[dis.index.duplicated(keep=False)]
dis = dis[~dis.index.duplicated()]
for index in dup_index:
dis.loc[index, :] = dup_dis.loc[index, :].apply(lambda x:pd.Series(x[~pd.isna(x)]).min() if(pd.isna(x).sum()!=x.shape[0]) else x[0], axis=0)
dis = dis.fillna(1)
dis_pairwise = dis.stack().reset_index()
dis_pairwise.columns = ['level_0', 'level_1', 'image_match_score']
dis_pairwise = dis_pairwise.loc[dis_pairwise.level_0 != dis_pairwise.level_1, :]
dis_pairwise['id'] = dis_pairwise.apply(lambda x: ';'.join(sorted([x['level_0'], x['level_1']])), axis=1)
dis_pairwise = dis_pairwise.drop_duplicates(subset='id')
qtl_overlap = bf.overlap(qtl[['CHR', 'qtl_start', 'qtl_end', 'SNP', 'P', 'phe_name']], qtl[['CHR', 'qtl_start', 'qtl_end', 'SNP', 'P', 'phe_name']],
cols1=['CHR', 'qtl_start', 'qtl_end'], cols2=['CHR', 'qtl_start', 'qtl_end'], how='inner', suffixes=('_1', '_2'))
qtl_overlap = qtl_overlap.loc[qtl_overlap.phe_name_1 != qtl_overlap.phe_name_2, :]
qtl_overlap['id'] = qtl_overlap.apply(lambda x: ';'.join(sorted([x['phe_name_1'], x['phe_name_2']])), axis=1)
qtl_overlap = qtl_overlap.drop_duplicates(subset='id')
coloc_pairwise_res = pd.merge(qtl_overlap, dis_pairwise, on='id')
coloc_pairwise_res = coloc_pairwise_res.drop(['id', 'level_0', 'level_1'], axis=1)
coloc_pairwise_res['coloc'] = 'No'
coloc_pairwise_res.loc[coloc_pairwise_res['image_match_score'] <= 0.2, 'coloc'] = 'Yes'
dis = dis.reindex(qtl.phe_name.unique()).reindex(qtl.phe_name.unique(), axis=1)
dis = dis.fillna(1)
return coloc_res, coloc_pairwise_res, dis