|
a |
|
b/modas/utils/CMplot.r |
|
|
1 |
#Version:3.3.3 |
|
|
2 |
#Data: 2018/12/11 |
|
|
3 |
#Author: Lilin Yin |
|
|
4 |
|
|
|
5 |
CMplot <- function( |
|
|
6 |
Pmap, |
|
|
7 |
col=c("#377EB8", "#4DAF4A", "#984EA3", "#FF7F00"), |
|
|
8 |
bin.size=1e6, |
|
|
9 |
bin.max=NULL, |
|
|
10 |
pch=19, |
|
|
11 |
band=1, |
|
|
12 |
cir.band=0.5, |
|
|
13 |
H=1.5, |
|
|
14 |
ylim=NULL, |
|
|
15 |
cex.axis=1, |
|
|
16 |
plot.type="b", |
|
|
17 |
multracks=FALSE, |
|
|
18 |
cex=c(0.5,1,1), |
|
|
19 |
r=0.3, |
|
|
20 |
xlab="Chromosome", |
|
|
21 |
ylab=expression(-log[10](italic(p))), |
|
|
22 |
xaxs="i", |
|
|
23 |
yaxs="r", |
|
|
24 |
outward=FALSE, |
|
|
25 |
threshold = NULL, |
|
|
26 |
threshold.col="red", |
|
|
27 |
threshold.lwd=1, |
|
|
28 |
threshold.lty=2, |
|
|
29 |
amplify= TRUE, |
|
|
30 |
chr.labels=NULL, |
|
|
31 |
signal.cex = 1.5, |
|
|
32 |
signal.pch = 19, |
|
|
33 |
signal.col="red", |
|
|
34 |
signal.line=1, |
|
|
35 |
cir.chr=TRUE, |
|
|
36 |
cir.chr.h=1.5, |
|
|
37 |
chr.den.col=c("darkgreen", "yellow", "red"), |
|
|
38 |
cir.legend=TRUE, |
|
|
39 |
cir.legend.cex=0.6, |
|
|
40 |
cir.legend.col="black", |
|
|
41 |
LOG10=TRUE, |
|
|
42 |
box=FALSE, |
|
|
43 |
conf.int.col="grey", |
|
|
44 |
file.output=TRUE, |
|
|
45 |
file="jpg", |
|
|
46 |
dpi=300, |
|
|
47 |
memo="", |
|
|
48 |
verbose=TRUE |
|
|
49 |
) |
|
|
50 |
{ |
|
|
51 |
|
|
|
52 |
#plot a circle with a radius of r |
|
|
53 |
circle.plot <- function(myr,type="l",x=NULL,lty=1,lwd=1,col="black",add=TRUE,n.point=1000) |
|
|
54 |
{ |
|
|
55 |
curve(sqrt(myr^2-x^2),xlim=c(-myr,myr),n=n.point,ylim=c(-myr,myr),type=type,lty=lty,col=col,lwd=lwd,add=add) |
|
|
56 |
curve(-sqrt(myr^2-x^2),xlim=c(-myr,myr),n=n.point,ylim=c(-myr,myr),type=type,lty=lty,col=col,lwd=lwd,add=TRUE) |
|
|
57 |
} |
|
|
58 |
|
|
|
59 |
Densitplot <- function( |
|
|
60 |
map, |
|
|
61 |
col=c("darkgreen", "yellow", "red"), |
|
|
62 |
main="SNP Density", |
|
|
63 |
bin=1e6, |
|
|
64 |
band=3, |
|
|
65 |
width=5, |
|
|
66 |
legend.len=10, |
|
|
67 |
legend.max=NULL, |
|
|
68 |
legend.pt.cex=3, |
|
|
69 |
legend.cex=1, |
|
|
70 |
legend.y.intersp=1, |
|
|
71 |
legend.x.intersp=1, |
|
|
72 |
plot=TRUE |
|
|
73 |
) |
|
|
74 |
{ |
|
|
75 |
map <- as.matrix(map) |
|
|
76 |
map <- map[!is.na(map[, 2]), ] |
|
|
77 |
map <- map[!is.na(as.numeric(map[, 3])), ] |
|
|
78 |
map <- map[map[, 2] != 0, ] |
|
|
79 |
#map <- map[map[, 3] != 0, ] |
|
|
80 |
options(warn = -1) |
|
|
81 |
max.chr <- max(as.numeric(map[, 2]), na.rm=TRUE) |
|
|
82 |
if(is.infinite(max.chr)) max.chr <- 0 |
|
|
83 |
map.xy.index <- which(!as.numeric(map[, 2]) %in% c(0 : max.chr)) |
|
|
84 |
if(length(map.xy.index) != 0){ |
|
|
85 |
chr.xy <- unique(map[map.xy.index, 2]) |
|
|
86 |
for(i in 1:length(chr.xy)){ |
|
|
87 |
map[map[, 2] == chr.xy[i], 2] <- max.chr + i |
|
|
88 |
} |
|
|
89 |
} |
|
|
90 |
map <- map[order(as.numeric(map[, 2]), as.numeric(map[, 3])), ] |
|
|
91 |
chr <- as.numeric(map[, 2]) |
|
|
92 |
pos <- as.numeric(map[, 3]) |
|
|
93 |
chr.num <- unique(chr) |
|
|
94 |
chorm.maxlen <- max(pos) |
|
|
95 |
if(plot) plot(NULL, xlim=c(0, chorm.maxlen + chorm.maxlen/10), ylim=c(0, length(chr.num) * band + band), main=main,axes=FALSE, xlab="", ylab="", xaxs="i", yaxs="i") |
|
|
96 |
pos.x <- list() |
|
|
97 |
col.index <- list() |
|
|
98 |
maxbin.num <- NULL |
|
|
99 |
for(i in 1 : length(chr.num)){ |
|
|
100 |
pos.x[[i]] <- pos[which(chr == chr.num[i])] |
|
|
101 |
cut.len <- ceiling((max(pos.x[[i]]) - min(pos.x[[i]])) / bin) |
|
|
102 |
if(cut.len <= 1){ |
|
|
103 |
maxbin.num <- c(maxbin.num,length(pos.x[[i]])) |
|
|
104 |
col.index[[i]] <- rep(length(pos.x[[i]]), length(pos.x[[i]])) |
|
|
105 |
}else{ |
|
|
106 |
cut.r <- cut(pos.x[[i]], cut.len, labels=FALSE) |
|
|
107 |
eachbin.num <- table(cut.r) |
|
|
108 |
maxbin.num <- c(maxbin.num, max(eachbin.num)) |
|
|
109 |
col.index[[i]] <- rep(eachbin.num, eachbin.num) |
|
|
110 |
} |
|
|
111 |
} |
|
|
112 |
Maxbin.num <- max(maxbin.num) |
|
|
113 |
maxbin.num <- Maxbin.num |
|
|
114 |
if(!is.null(legend.max)){ |
|
|
115 |
maxbin.num <- legend.max |
|
|
116 |
} |
|
|
117 |
col=colorRampPalette(col)(maxbin.num) |
|
|
118 |
col.seg=NULL |
|
|
119 |
for(i in 1 : length(chr.num)){ |
|
|
120 |
if(plot) polygon(c(0, 0, max(pos.x[[i]]), max(pos.x[[i]])), |
|
|
121 |
c(-width/5 - band * (i - length(chr.num) - 1), width/5 - band * (i - length(chr.num) - 1), |
|
|
122 |
width/5 - band * (i - length(chr.num) - 1), -width/5 - band * (i - length(chr.num) - 1)), col="grey", border="grey") |
|
|
123 |
if(!is.null(legend.max)){ |
|
|
124 |
if(legend.max < Maxbin.num){ |
|
|
125 |
col.index[[i]][col.index[[i]] > legend.max] <- legend.max |
|
|
126 |
} |
|
|
127 |
} |
|
|
128 |
col.seg <- c(col.seg, col[round(col.index[[i]] * length(col) / maxbin.num)]) |
|
|
129 |
if(plot) segments(pos.x[[i]], -width/5 - band * (i - length(chr.num) - 1), pos.x[[i]], width/5 - band * (i - length(chr.num) - 1), |
|
|
130 |
col=col[round(col.index[[i]] * length(col) / maxbin.num)], lwd=1) |
|
|
131 |
} |
|
|
132 |
if(length(map.xy.index) != 0){ |
|
|
133 |
for(i in 1:length(chr.xy)){ |
|
|
134 |
chr.num[chr.num == max.chr + i] <- chr.xy[i] |
|
|
135 |
} |
|
|
136 |
} |
|
|
137 |
chr.num <- rev(chr.num) |
|
|
138 |
if(plot){ |
|
|
139 |
if(max.chr == 0) mtext(at=seq(band, length(chr.num) * band, band),text=chr.num, side=2, las=2, font=1, cex=cex.axis*0.6, line=0.2) |
|
|
140 |
if(max.chr != 0) mtext(at=seq(band, length(chr.num) * band, band),text=paste("Chr", chr.num, sep=""), side=2, las=2, font=1, cex=cex.axis*0.6, line=0.2) |
|
|
141 |
} |
|
|
142 |
if(plot) axis(3, at=seq(0, chorm.maxlen, length=10), labels=paste(round((seq(0, chorm.maxlen, length=10)) / 1e6, 0), "Mb", sep=""), |
|
|
143 |
font=1, cex.axis=cex.axis*0.8, tck=0.01, lwd=2, padj=1.2) |
|
|
144 |
# image(c(chorm.maxlen-chorm.maxlen * legend.width / 20 , chorm.maxlen), |
|
|
145 |
# round(seq(band - width/5, (length(chr.num) * band + band) * legend.height / 2 , length=maxbin.num+1), 2), |
|
|
146 |
# t(matrix(0 : maxbin.num)), col=c("white", rev(heat.colors(maxbin.num))), add=TRUE) |
|
|
147 |
|
|
|
148 |
if(maxbin.num <= legend.len) legend.len <- maxbin.num |
|
|
149 |
|
|
|
150 |
legend.y <- round(seq(0, maxbin.num, length=legend.len)) |
|
|
151 |
len <- legend.y[2] |
|
|
152 |
legend.y <- seq(0, maxbin.num, len) |
|
|
153 |
if(!is.null(legend.max)){ |
|
|
154 |
if(legend.max < Maxbin.num){ |
|
|
155 |
if(!maxbin.num %in% legend.y){ |
|
|
156 |
legend.y <- c(legend.y, paste(">=", maxbin.num, sep="")) |
|
|
157 |
legend.y.col <- c(legend.y[c(-1, -length(legend.y))], maxbin.num) |
|
|
158 |
}else{ |
|
|
159 |
legend.y[length(legend.y)] <- paste(">=", maxbin.num, sep="") |
|
|
160 |
legend.y.col <- c(legend.y[c(-1, -length(legend.y))], maxbin.num) |
|
|
161 |
} |
|
|
162 |
}else{ |
|
|
163 |
if(!maxbin.num %in% legend.y){ |
|
|
164 |
legend.y <- c(legend.y, maxbin.num) |
|
|
165 |
} |
|
|
166 |
legend.y.col <- c(legend.y[-1]) |
|
|
167 |
} |
|
|
168 |
}else{ |
|
|
169 |
if(!maxbin.num %in% legend.y){ |
|
|
170 |
legend.y <- c(legend.y, paste(">", max(legend.y), sep="")) |
|
|
171 |
legend.y.col <- c(legend.y[c(-1, -length(legend.y))], maxbin.num) |
|
|
172 |
}else{ |
|
|
173 |
legend.y.col <- c(legend.y[-1]) |
|
|
174 |
} |
|
|
175 |
} |
|
|
176 |
legend.y.col <- as.numeric(legend.y.col) |
|
|
177 |
legend.col <- c("grey", col[round(legend.y.col * length(col) / maxbin.num)]) |
|
|
178 |
if(plot) legend(x=(chorm.maxlen + chorm.maxlen/100), y=( -width/2.5 - band * (length(chr.num) - length(chr.num) - 1)), title="", legend=legend.y, pch=15, pt.cex = legend.pt.cex, col=legend.col, |
|
|
179 |
cex=legend.cex, bty="n", y.intersp=legend.y.intersp, x.intersp=legend.x.intersp, yjust=0, xjust=0, xpd=TRUE) |
|
|
180 |
if(!plot) return(list(den.col=col.seg, legend.col=legend.col, legend.y=legend.y)) |
|
|
181 |
} |
|
|
182 |
|
|
|
183 |
if(sum(plot.type %in% "b")==1) plot.type=c("c","m","q","d") |
|
|
184 |
|
|
|
185 |
taxa=colnames(Pmap)[-c(1:3)] |
|
|
186 |
if(!is.null(memo) && memo != "") memo <- paste("_", memo, sep="") |
|
|
187 |
if(length(taxa) == 0) taxa <- "Index" |
|
|
188 |
taxa <- paste(taxa, memo, sep="") |
|
|
189 |
|
|
|
190 |
#SNP-Density plot |
|
|
191 |
if("d" %in% plot.type){ |
|
|
192 |
if(verbose) print("SNP_Density Plotting...") |
|
|
193 |
if(file.output){ |
|
|
194 |
if(file=="jpg") jpeg(paste("SNP_Density.",paste(taxa,collapse="."),".jpg",sep=""), width = 9*dpi,height=7*dpi,res=dpi,quality = 100) |
|
|
195 |
if(file=="pdf") pdf(paste("SNP_Density.",paste(taxa,collapse="."),".pdf",sep=""), width = 9,height=7) |
|
|
196 |
if(file=="tiff") tiff(paste("SNP_Density.",paste(taxa,collapse="."),".tiff",sep=""), width = 9*dpi,height=7*dpi,res=dpi) |
|
|
197 |
par(xpd=TRUE) |
|
|
198 |
}else{ |
|
|
199 |
if(is.null(dev.list())) dev.new(width = 9,height=7) |
|
|
200 |
par(xpd=TRUE) |
|
|
201 |
} |
|
|
202 |
|
|
|
203 |
Densitplot(map=Pmap[,c(1:3)], col=col, bin=bin.size, legend.max=bin.max, main=paste("The number of SNPs within ", bin.size/1e6, "Mb window size", sep="")) |
|
|
204 |
if(file.output) dev.off() |
|
|
205 |
} |
|
|
206 |
|
|
|
207 |
if(length(plot.type) !=1 | (!"d" %in% plot.type)){ |
|
|
208 |
|
|
|
209 |
#order Pmap by the name of SNP |
|
|
210 |
#Pmap=Pmap[order(Pmap[,1]),] |
|
|
211 |
Pmap <- as.matrix(Pmap) |
|
|
212 |
|
|
|
213 |
#delete the column of SNPs names |
|
|
214 |
Pmap <- Pmap[,-1] |
|
|
215 |
|
|
|
216 |
#scale and adjust the parameters |
|
|
217 |
cir.chr.h <- cir.chr.h/5 |
|
|
218 |
cir.band <- cir.band/5 |
|
|
219 |
if(!is.null(threshold)){ |
|
|
220 |
threshold.col <- rep(threshold.col,length(threshold)) |
|
|
221 |
threshold.lwd <- rep(threshold.lwd,length(threshold)) |
|
|
222 |
threshold.lty <- rep(threshold.lty,length(threshold)) |
|
|
223 |
signal.col <- rep(signal.col,length(threshold)) |
|
|
224 |
signal.pch <- rep(signal.pch,length(threshold)) |
|
|
225 |
signal.cex <- rep(signal.cex,length(threshold)) |
|
|
226 |
} |
|
|
227 |
if(length(cex)!=3) cex <- rep(cex,3) |
|
|
228 |
if(!is.null(ylim)){ |
|
|
229 |
if(length(ylim)==1) ylim <- c(0,ylim) |
|
|
230 |
} |
|
|
231 |
|
|
|
232 |
if(is.null(conf.int.col)) conf.int.col <- NA |
|
|
233 |
if(is.na(conf.int.col)){ |
|
|
234 |
conf.int=FALSE |
|
|
235 |
}else{ |
|
|
236 |
conf.int=TRUE |
|
|
237 |
} |
|
|
238 |
|
|
|
239 |
#get the number of traits |
|
|
240 |
R=ncol(Pmap)-2 |
|
|
241 |
|
|
|
242 |
#replace the non-euchromosome |
|
|
243 |
options(warn = -1) |
|
|
244 |
numeric.chr <- as.numeric(Pmap[, 1]) |
|
|
245 |
options(warn = 0) |
|
|
246 |
max.chr <- max(numeric.chr, na.rm=TRUE) |
|
|
247 |
if(is.infinite(max.chr)) max.chr <- 0 |
|
|
248 |
map.xy.index <- which(!numeric.chr %in% c(0:max.chr)) |
|
|
249 |
if(length(map.xy.index) != 0){ |
|
|
250 |
chr.xy <- unique(Pmap[map.xy.index, 1]) |
|
|
251 |
for(i in 1:length(chr.xy)){ |
|
|
252 |
Pmap[Pmap[, 1] == chr.xy[i], 1] <- max.chr + i |
|
|
253 |
} |
|
|
254 |
} |
|
|
255 |
|
|
|
256 |
Pmap <- matrix(as.numeric(Pmap), nrow(Pmap)) |
|
|
257 |
Pmap[is.na(Pmap)] <- 0 |
|
|
258 |
|
|
|
259 |
#order the GWAS results by chromosome and position |
|
|
260 |
Pmap <- Pmap[order(Pmap[, 1], Pmap[,2]), ] |
|
|
261 |
|
|
|
262 |
#get the index of chromosome |
|
|
263 |
chr <- unique(Pmap[,1]) |
|
|
264 |
chr.ori <- chr |
|
|
265 |
if(length(map.xy.index) != 0){ |
|
|
266 |
for(i in 1:length(chr.xy)){ |
|
|
267 |
chr.ori[chr.ori == max.chr + i] <- chr.xy[i] |
|
|
268 |
} |
|
|
269 |
} |
|
|
270 |
|
|
|
271 |
pvalueT <- as.matrix(Pmap[,-c(1:2)]) |
|
|
272 |
pvalue.pos <- Pmap[, 2] |
|
|
273 |
p0.index <- Pmap[, 1] == 0 |
|
|
274 |
if(sum(p0.index) != 0){ |
|
|
275 |
pvalue.pos[p0.index] <- 1:sum(p0.index) |
|
|
276 |
} |
|
|
277 |
pvalue.pos.list <- tapply(pvalue.pos, Pmap[, 1], list) |
|
|
278 |
|
|
|
279 |
#scale the space parameter between chromosomes |
|
|
280 |
if(!missing(band)){ |
|
|
281 |
band <- floor(band*(sum(sapply(pvalue.pos.list, max))/100)) |
|
|
282 |
}else{ |
|
|
283 |
band <- floor((sum(sapply(pvalue.pos.list, max))/100)) |
|
|
284 |
} |
|
|
285 |
if(band==0) band=1 |
|
|
286 |
|
|
|
287 |
if(LOG10){ |
|
|
288 |
pvalueT[pvalueT <= 0] <- 1 |
|
|
289 |
pvalueT[pvalueT > 1] <- 1 |
|
|
290 |
} |
|
|
291 |
|
|
|
292 |
#set the colors for the plot |
|
|
293 |
#palette(heat.colors(1024)) #(heatmap) |
|
|
294 |
#T=floor(1024/max(pvalue)) |
|
|
295 |
#plot(pvalue,pch=19,cex=0.6,col=(1024-floor(pvalue*T))) |
|
|
296 |
if(is.vector(col)){ |
|
|
297 |
col <- matrix(col,R,length(col),byrow=TRUE) |
|
|
298 |
} |
|
|
299 |
if(is.matrix(col)){ |
|
|
300 |
#try to transform the colors into matrix for all traits |
|
|
301 |
col <- matrix(as.vector(t(col)),R,dim(col)[2],byrow=TRUE) |
|
|
302 |
} |
|
|
303 |
|
|
|
304 |
Num <- as.numeric(table(Pmap[,1])) |
|
|
305 |
Nchr <- length(Num) |
|
|
306 |
N <- NULL |
|
|
307 |
|
|
|
308 |
#set the colors for each traits |
|
|
309 |
for(i in 1:R){ |
|
|
310 |
colx <- col[i,] |
|
|
311 |
colx <- colx[!is.na(colx)] |
|
|
312 |
N[i] <- ceiling(Nchr/length(colx)) |
|
|
313 |
} |
|
|
314 |
|
|
|
315 |
#insert the space into chromosomes and return the midpoint of each chromosome |
|
|
316 |
ticks <- NULL |
|
|
317 |
pvalue.posN <- NULL |
|
|
318 |
#pvalue <- pvalueT[,j] |
|
|
319 |
for(i in 0:(Nchr-1)){ |
|
|
320 |
if (i==0){ |
|
|
321 |
#pvalue <- append(pvalue,rep(Inf,band),after=0) |
|
|
322 |
pvalue.posN <- pvalue.pos.list[[i+1]] + band |
|
|
323 |
ticks[i+1] <- max(pvalue.posN)-floor(max(pvalue.pos.list[[i+1]])/2) |
|
|
324 |
}else{ |
|
|
325 |
#pvalue <- append(pvalue,rep(Inf,band),after=sum(Num[1:i])+i*band) |
|
|
326 |
pvalue.posN <- c(pvalue.posN, max(pvalue.posN) + band + pvalue.pos.list[[i+1]]) |
|
|
327 |
ticks[i+1] <- max(pvalue.posN)-floor(max(pvalue.pos.list[[i+1]])/2) |
|
|
328 |
} |
|
|
329 |
} |
|
|
330 |
pvalue.posN.list <- tapply(pvalue.posN, Pmap[, 1], list) |
|
|
331 |
#NewP[[j]] <- pvalue |
|
|
332 |
|
|
|
333 |
#merge the pvalues of traits by column |
|
|
334 |
if(LOG10){ |
|
|
335 |
logpvalueT <- -log10(pvalueT) |
|
|
336 |
}else{ |
|
|
337 |
logpvalueT <- pvalueT |
|
|
338 |
} |
|
|
339 |
|
|
|
340 |
add <- list() |
|
|
341 |
for(i in 1:R){ |
|
|
342 |
colx <- col[i,] |
|
|
343 |
colx <- colx[!is.na(colx)] |
|
|
344 |
add[[i]] <- c(Num,rep(0,N[i]*length(colx)-Nchr)) |
|
|
345 |
} |
|
|
346 |
|
|
|
347 |
TotalN <- max(pvalue.posN) |
|
|
348 |
|
|
|
349 |
if(length(chr.den.col) > 1){ |
|
|
350 |
cir.density=TRUE |
|
|
351 |
den.fold <- 20 |
|
|
352 |
density.list <- Densitplot(map=Pmap[,c(1,1,2)], col=chr.den.col, plot=FALSE, bin=bin.size, legend.max=bin.max) |
|
|
353 |
#list(den.col=col.seg, legend.col=legend.col, legend.y=legend.y) |
|
|
354 |
}else{ |
|
|
355 |
cir.density=FALSE |
|
|
356 |
} |
|
|
357 |
|
|
|
358 |
signal.line.index <- NULL |
|
|
359 |
if(!is.null(threshold)){ |
|
|
360 |
if(!is.null(signal.line)){ |
|
|
361 |
for(l in 1:R){ |
|
|
362 |
if(LOG10){ |
|
|
363 |
signal.line.index <- c(signal.line.index,which(pvalueT[,l] < min(threshold))) |
|
|
364 |
}else{ |
|
|
365 |
signal.line.index <- c(signal.line.index,which(pvalueT[,l] > max(threshold))) |
|
|
366 |
} |
|
|
367 |
} |
|
|
368 |
signal.line.index <- unique(signal.line.index) |
|
|
369 |
} |
|
|
370 |
} |
|
|
371 |
signal.line.index <- pvalue.posN[signal.line.index] |
|
|
372 |
} |
|
|
373 |
|
|
|
374 |
#plot circle Manhattan |
|
|
375 |
if("c" %in% plot.type){ |
|
|
376 |
#print("Starting Circular-Manhattan plot!",quote=F) |
|
|
377 |
if(file.output){ |
|
|
378 |
if(file=="jpg") jpeg(paste("Circular-Manhattan.",paste(taxa,collapse="."),".jpg",sep=""), width = 8*dpi,height=8*dpi,res=dpi,quality = 100) |
|
|
379 |
if(file=="pdf") pdf(paste("Circular-Manhattan.",paste(taxa,collapse="."),".pdf",sep=""), width = 10,height=10) |
|
|
380 |
if(file=="tiff") tiff(paste("Circular-Manhattan.",paste(taxa,collapse="."),".tiff",sep=""), width = 8*dpi,height=8*dpi,res=dpi) |
|
|
381 |
par(pty="s", xpd=TRUE, mar=c(1,1,1,1)) |
|
|
382 |
} |
|
|
383 |
if(!file.output){ |
|
|
384 |
if(is.null(dev.list())) dev.new(width=8, height=8) |
|
|
385 |
par(pty="s", xpd=TRUE) |
|
|
386 |
} |
|
|
387 |
RR <- r+H*R+cir.band*R |
|
|
388 |
if(cir.density){ |
|
|
389 |
plot(NULL,xlim=c(1.05*(-RR-4*cir.chr.h),1.1*(RR+4*cir.chr.h)),ylim=c(1.05*(-RR-4*cir.chr.h),1.1*(RR+4*cir.chr.h)),axes=FALSE,xlab="",ylab="") |
|
|
390 |
}else{ |
|
|
391 |
plot(NULL,xlim=c(1.05*(-RR-4*cir.chr.h),1.05*(RR+4*cir.chr.h)),ylim=c(1.05*(-RR-4*cir.chr.h),1.05*(RR+4*cir.chr.h)),axes=FALSE,xlab="",ylab="") |
|
|
392 |
} |
|
|
393 |
if(!is.null(signal.line)){ |
|
|
394 |
if(!is.null(signal.line.index)){ |
|
|
395 |
X1chr <- (RR)*sin(2*pi*(signal.line.index-round(band/2))/TotalN) |
|
|
396 |
Y1chr <- (RR)*cos(2*pi*(signal.line.index-round(band/2))/TotalN) |
|
|
397 |
X2chr <- (r)*sin(2*pi*(signal.line.index-round(band/2))/TotalN) |
|
|
398 |
Y2chr <- (r)*cos(2*pi*(signal.line.index-round(band/2))/TotalN) |
|
|
399 |
segments(X1chr,Y1chr,X2chr,Y2chr,lty=2,lwd=signal.line,col="grey") |
|
|
400 |
} |
|
|
401 |
} |
|
|
402 |
for(i in 1:R){ |
|
|
403 |
|
|
|
404 |
#get the colors for each trait |
|
|
405 |
colx <- col[i,] |
|
|
406 |
colx <- colx[!is.na(colx)] |
|
|
407 |
|
|
|
408 |
#debug |
|
|
409 |
#print(colx) |
|
|
410 |
|
|
|
411 |
if(verbose) print(paste("Circular_Manhattan Plotting ",taxa[i],"...",sep="")) |
|
|
412 |
pvalue <- pvalueT[,i] |
|
|
413 |
logpvalue <- logpvalueT[,i] |
|
|
414 |
if(is.null(ylim)){ |
|
|
415 |
if(LOG10){ |
|
|
416 |
Max <- ceiling(-log10(min(pvalue[pvalue!=0]))) |
|
|
417 |
Min <- 0 |
|
|
418 |
}else{ |
|
|
419 |
Max <- ceiling(max(pvalue[pvalue!=Inf])) |
|
|
420 |
if(abs(Max)<=1) Max <- max(pvalue[pvalue!=Inf]) |
|
|
421 |
Min <- floor(min(pvalue[pvalue!=Inf])) |
|
|
422 |
if(abs(Min)<=1) Min <- min(pvalue[pvalue!=Inf]) |
|
|
423 |
} |
|
|
424 |
}else{ |
|
|
425 |
Max <- ylim[2] |
|
|
426 |
Min <- ylim[1] |
|
|
427 |
} |
|
|
428 |
Cpvalue <- (H*(logpvalue-Min))/(Max-Min) |
|
|
429 |
if(outward==TRUE){ |
|
|
430 |
if(cir.chr==TRUE){ |
|
|
431 |
|
|
|
432 |
#plot the boundary which represents the chromosomes |
|
|
433 |
polygon.num <- 1000 |
|
|
434 |
for(k in 1:length(chr)){ |
|
|
435 |
if(k==1){ |
|
|
436 |
polygon.index <- seq(round(band/2)+1,-round(band/2)+max(pvalue.posN.list[[1]]), length=polygon.num) |
|
|
437 |
#change the axis from right angle into circle format |
|
|
438 |
X1chr=(RR)*sin(2*pi*(polygon.index)/TotalN) |
|
|
439 |
Y1chr=(RR)*cos(2*pi*(polygon.index)/TotalN) |
|
|
440 |
X2chr=(RR+cir.chr.h)*sin(2*pi*(polygon.index)/TotalN) |
|
|
441 |
Y2chr=(RR+cir.chr.h)*cos(2*pi*(polygon.index)/TotalN) |
|
|
442 |
if(is.null(chr.den.col)){ |
|
|
443 |
polygon(c(rev(X1chr),X2chr),c(rev(Y1chr),Y2chr),col=rep(colx,ceiling(length(chr)/length(colx)))[k],border=rep(colx,ceiling(length(chr)/length(colx)))[k]) |
|
|
444 |
}else{ |
|
|
445 |
if(cir.density){ |
|
|
446 |
polygon(c(rev(X1chr),X2chr),c(rev(Y1chr),Y2chr),col="grey",border="grey") |
|
|
447 |
}else{ |
|
|
448 |
polygon(c(rev(X1chr),X2chr),c(rev(Y1chr),Y2chr),col=chr.den.col,border=chr.den.col) |
|
|
449 |
} |
|
|
450 |
} |
|
|
451 |
}else{ |
|
|
452 |
polygon.index <- seq(1+round(band/2)+max(pvalue.posN.list[[k-1]]),-round(band/2)+max(pvalue.posN.list[[k]]), length=polygon.num) |
|
|
453 |
X1chr=(RR)*sin(2*pi*(polygon.index)/TotalN) |
|
|
454 |
Y1chr=(RR)*cos(2*pi*(polygon.index)/TotalN) |
|
|
455 |
X2chr=(RR+cir.chr.h)*sin(2*pi*(polygon.index)/TotalN) |
|
|
456 |
Y2chr=(RR+cir.chr.h)*cos(2*pi*(polygon.index)/TotalN) |
|
|
457 |
if(is.null(chr.den.col)){ |
|
|
458 |
polygon(c(rev(X1chr),X2chr),c(rev(Y1chr),Y2chr),col=rep(colx,ceiling(length(chr)/length(colx)))[k],border=rep(colx,ceiling(length(chr)/length(colx)))[k]) |
|
|
459 |
}else{ |
|
|
460 |
if(cir.density){ |
|
|
461 |
polygon(c(rev(X1chr),X2chr),c(rev(Y1chr),Y2chr),col="grey",border="grey") |
|
|
462 |
}else{ |
|
|
463 |
polygon(c(rev(X1chr),X2chr),c(rev(Y1chr),Y2chr),col=chr.den.col,border=chr.den.col) |
|
|
464 |
} |
|
|
465 |
} |
|
|
466 |
} |
|
|
467 |
} |
|
|
468 |
|
|
|
469 |
if(cir.density){ |
|
|
470 |
|
|
|
471 |
segments( |
|
|
472 |
(RR)*sin(2*pi*(pvalue.posN-round(band/2))/TotalN), |
|
|
473 |
(RR)*cos(2*pi*(pvalue.posN-round(band/2))/TotalN), |
|
|
474 |
(RR+cir.chr.h)*sin(2*pi*(pvalue.posN-round(band/2))/TotalN), |
|
|
475 |
(RR+cir.chr.h)*cos(2*pi*(pvalue.posN-round(band/2))/TotalN), |
|
|
476 |
col=density.list$den.col, lwd=0.1 |
|
|
477 |
) |
|
|
478 |
legend( |
|
|
479 |
x=RR+4*cir.chr.h, |
|
|
480 |
y=(RR+4*cir.chr.h)/2, |
|
|
481 |
title="", legend=density.list$legend.y, pch=15, pt.cex = 3, col=density.list$legend.col, |
|
|
482 |
cex=1, bty="n", |
|
|
483 |
y.intersp=1, |
|
|
484 |
x.intersp=1, |
|
|
485 |
yjust=0.5, xjust=0, xpd=TRUE |
|
|
486 |
) |
|
|
487 |
|
|
|
488 |
} |
|
|
489 |
|
|
|
490 |
# XLine=(RR+cir.chr.h)*sin(2*pi*(1:TotalN)/TotalN) |
|
|
491 |
# YLine=(RR+cir.chr.h)*cos(2*pi*(1:TotalN)/TotalN) |
|
|
492 |
# lines(XLine,YLine,lwd=1.5) |
|
|
493 |
if(cir.density){ |
|
|
494 |
circle.plot(myr=RR+cir.chr.h,lwd=1.5,add=TRUE,col='grey') |
|
|
495 |
circle.plot(myr=RR,lwd=1.5,add=TRUE,col='grey') |
|
|
496 |
}else{ |
|
|
497 |
circle.plot(myr=RR+cir.chr.h,lwd=1.5,add=TRUE) |
|
|
498 |
circle.plot(myr=RR,lwd=1.5,add=TRUE) |
|
|
499 |
} |
|
|
500 |
|
|
|
501 |
} |
|
|
502 |
|
|
|
503 |
X=(Cpvalue+r+H*(i-1)+cir.band*(i-1))*sin(2*pi*(pvalue.posN-round(band/2))/TotalN) |
|
|
504 |
Y=(Cpvalue+r+H*(i-1)+cir.band*(i-1))*cos(2*pi*(pvalue.posN-round(band/2))/TotalN) |
|
|
505 |
points(X,Y,pch=19,cex=cex[1],col=rep(rep(colx,N[i]),add[[i]])) |
|
|
506 |
|
|
|
507 |
#plot the legend for each trait |
|
|
508 |
if(cir.legend==TRUE){ |
|
|
509 |
#try to get the number after radix point |
|
|
510 |
if((Max-Min) > 1) { |
|
|
511 |
round.n=2 |
|
|
512 |
}else{ |
|
|
513 |
round.n=nchar(as.character(10^(-ceiling(-log10(Max)))))-1 |
|
|
514 |
} |
|
|
515 |
segments(0,r+H*(i-1)+cir.band*(i-1),0,r+H*i+cir.band*(i-1),col=cir.legend.col,lwd=1.5) |
|
|
516 |
segments(0,r+H*(i-1)+cir.band*(i-1),H/20,r+H*(i-1)+cir.band*(i-1),col=cir.legend.col,lwd=1.5) |
|
|
517 |
circle.plot(myr=r+H*(i-1)+cir.band*(i-1),lwd=0.5,add=TRUE,col='grey') |
|
|
518 |
segments(0,r+H*(i-0.75)+cir.band*(i-1),H/20,r+H*(i-0.75)+cir.band*(i-1),col=cir.legend.col,lwd=1.5) |
|
|
519 |
circle.plot(myr=r+H*(i-0.75)+cir.band*(i-1),lwd=0.5,add=TRUE,col='grey') |
|
|
520 |
segments(0,r+H*(i-0.5)+cir.band*(i-1),H/20,r+H*(i-0.5)+cir.band*(i-1),col=cir.legend.col,lwd=1.5) |
|
|
521 |
circle.plot(myr=r+H*(i-0.5)+cir.band*(i-1),lwd=0.5,add=TRUE,col='grey') |
|
|
522 |
segments(0,r+H*(i-0.25)+cir.band*(i-1),H/20,r+H*(i-0.25)+cir.band*(i-1),col=cir.legend.col,lwd=1.5) |
|
|
523 |
circle.plot(myr=r+H*(i-0.25)+cir.band*(i-1),lwd=0.5,add=TRUE,col='grey') |
|
|
524 |
segments(0,r+H*(i-0)+cir.band*(i-1),H/20,r+H*(i-0)+cir.band*(i-1),col=cir.legend.col,lwd=1.5) |
|
|
525 |
circle.plot(myr=r+H*(i-0)+cir.band*(i-1),lwd=0.5,add=TRUE,col='grey') |
|
|
526 |
text(-r/15,r+H*(i-0.94)+cir.band*(i-1),round(Min+(Max-Min)*0,round.n),adj=1,col=cir.legend.col,cex=cir.legend.cex,font=2) |
|
|
527 |
text(-r/15,r+H*(i-0.75)+cir.band*(i-1),round(Min+(Max-Min)*0.25,round.n),adj=1,col=cir.legend.col,cex=cir.legend.cex,font=2) |
|
|
528 |
text(-r/15,r+H*(i-0.5)+cir.band*(i-1),round(Min+(Max-Min)*0.5,round.n),adj=1,col=cir.legend.col,cex=cir.legend.cex,font=2) |
|
|
529 |
text(-r/15,r+H*(i-0.25)+cir.band*(i-1),round(Min+(Max-Min)*0.75,round.n),adj=1,col=cir.legend.col,cex=cir.legend.cex,font=2) |
|
|
530 |
text(-r/15,r+H*(i-0.06)+cir.band*(i-1),round(Min+(Max-Min)*1,round.n),adj=1,col=cir.legend.col,cex=cir.legend.cex,font=2) |
|
|
531 |
} |
|
|
532 |
|
|
|
533 |
if(!is.null(threshold)){ |
|
|
534 |
if(sum(threshold!=0)==length(threshold)){ |
|
|
535 |
for(thr in 1:length(threshold)){ |
|
|
536 |
significantline1=ifelse(LOG10, H*(-log10(threshold[thr])-Min)/(Max-Min), H*(threshold[thr]-Min)/(Max-Min)) |
|
|
537 |
#s1X=(significantline1+r+H*(i-1)+cir.band*(i-1))*sin(2*pi*(0:TotalN)/TotalN) |
|
|
538 |
#s1Y=(significantline1+r+H*(i-1)+cir.band*(i-1))*cos(2*pi*(0:TotalN)/TotalN) |
|
|
539 |
if(significantline1<H){ |
|
|
540 |
#lines(s1X,s1Y,type="l",col=threshold.col,lwd=threshold.col,lty=threshold.lty) |
|
|
541 |
circle.plot(myr=(significantline1+r+H*(i-1)+cir.band*(i-1)),col=threshold.col[thr],lwd=threshold.lwd[thr],lty=threshold.lty[thr]) |
|
|
542 |
}else{ |
|
|
543 |
warning(paste("No significant points for ",taxa[i]," pass the threshold level using threshold=",threshold[thr],"!",sep="")) |
|
|
544 |
} |
|
|
545 |
} |
|
|
546 |
} |
|
|
547 |
} |
|
|
548 |
|
|
|
549 |
if(!is.null(threshold)){ |
|
|
550 |
if(sum(threshold!=0)==length(threshold)){ |
|
|
551 |
if(amplify==TRUE){ |
|
|
552 |
if(LOG10){ |
|
|
553 |
threshold <- sort(threshold) |
|
|
554 |
significantline1=H*(-log10(max(threshold))-Min)/(Max-Min) |
|
|
555 |
}else{ |
|
|
556 |
threshold <- sort(threshold, decreasing=TRUE) |
|
|
557 |
significantline1=H*(min(threshold)-Min)/(Max-Min) |
|
|
558 |
} |
|
|
559 |
|
|
|
560 |
p_amp.index <- which(Cpvalue>=significantline1) |
|
|
561 |
HX1=(Cpvalue[p_amp.index]+r+H*(i-1)+cir.band*(i-1))*sin(2*pi*(pvalue.posN[p_amp.index]-round(band/2))/TotalN) |
|
|
562 |
HY1=(Cpvalue[p_amp.index]+r+H*(i-1)+cir.band*(i-1))*cos(2*pi*(pvalue.posN[p_amp.index]-round(band/2))/TotalN) |
|
|
563 |
|
|
|
564 |
#cover the points that exceed the threshold with the color "white" |
|
|
565 |
points(HX1,HY1,pch=19,cex=cex[1],col="white") |
|
|
566 |
|
|
|
567 |
for(ll in 1:length(threshold)){ |
|
|
568 |
if(ll == 1){ |
|
|
569 |
if(LOG10){ |
|
|
570 |
significantline1=H*(-log10(threshold[ll])-Min)/(Max-Min) |
|
|
571 |
}else{ |
|
|
572 |
significantline1=H*(threshold[ll]-Min)/(Max-Min) |
|
|
573 |
} |
|
|
574 |
p_amp.index <- which(Cpvalue>=significantline1) |
|
|
575 |
HX1=(Cpvalue[p_amp.index]+r+H*(i-1)+cir.band*(i-1))*sin(2*pi*(pvalue.posN[p_amp.index]-round(band/2))/TotalN) |
|
|
576 |
HY1=(Cpvalue[p_amp.index]+r+H*(i-1)+cir.band*(i-1))*cos(2*pi*(pvalue.posN[p_amp.index]-round(band/2))/TotalN) |
|
|
577 |
}else{ |
|
|
578 |
if(LOG10){ |
|
|
579 |
significantline0=H*(-log10(threshold[ll-1])-Min)/(Max-Min) |
|
|
580 |
significantline1=H*(-log10(threshold[ll])-Min)/(Max-Min) |
|
|
581 |
}else{ |
|
|
582 |
significantline0=H*(threshold[ll-1]-Min)/(Max-Min) |
|
|
583 |
significantline1=H*(threshold[ll]-Min)/(Max-Min) |
|
|
584 |
} |
|
|
585 |
p_amp.index <- which(Cpvalue>=significantline1 & Cpvalue < significantline0) |
|
|
586 |
HX1=(Cpvalue[p_amp.index]+r+H*(i-1)+cir.band*(i-1))*sin(2*pi*(pvalue.posN[p_amp.index]-round(band/2))/TotalN) |
|
|
587 |
HY1=(Cpvalue[p_amp.index]+r+H*(i-1)+cir.band*(i-1))*cos(2*pi*(pvalue.posN[p_amp.index]-round(band/2))/TotalN) |
|
|
588 |
} |
|
|
589 |
|
|
|
590 |
if(is.null(signal.col)){ |
|
|
591 |
points(HX1,HY1,pch=signal.pch[ll],cex=signal.cex[ll]*cex[1],col=rep(rep(colx,N[i]),add[[i]])[p_amp.index]) |
|
|
592 |
}else{ |
|
|
593 |
points(HX1,HY1,pch=signal.pch[ll],cex=signal.cex[ll]*cex[1],col=signal.col[ll]) |
|
|
594 |
} |
|
|
595 |
} |
|
|
596 |
} |
|
|
597 |
} |
|
|
598 |
} |
|
|
599 |
if(cir.chr==TRUE){ |
|
|
600 |
ticks1=1.07*(RR+cir.chr.h)*sin(2*pi*(ticks-round(band/2))/TotalN) |
|
|
601 |
ticks2=1.07*(RR+cir.chr.h)*cos(2*pi*(ticks-round(band/2))/TotalN) |
|
|
602 |
if(is.null(chr.labels)){ |
|
|
603 |
for(i in 1:length(ticks)){ |
|
|
604 |
angle=360*(1-(ticks-round(band/2))[i]/TotalN) |
|
|
605 |
text(ticks1[i],ticks2[i],chr.ori[i],srt=angle,font=2,cex=cex.axis) |
|
|
606 |
} |
|
|
607 |
}else{ |
|
|
608 |
for(i in 1:length(ticks)){ |
|
|
609 |
angle=360*(1-(ticks-round(band/2))[i]/TotalN) |
|
|
610 |
text(ticks1[i],ticks2[i],chr.labels[i],srt=angle,font=2,cex=cex.axis) |
|
|
611 |
} |
|
|
612 |
} |
|
|
613 |
}else{ |
|
|
614 |
ticks1=(0.9*r)*sin(2*pi*(ticks-round(band/2))/TotalN) |
|
|
615 |
ticks2=(0.9*r)*cos(2*pi*(ticks-round(band/2))/TotalN) |
|
|
616 |
if(is.null(chr.labels)){ |
|
|
617 |
for(i in 1:length(ticks)){ |
|
|
618 |
angle=360*(1-(ticks-round(band/2))[i]/TotalN) |
|
|
619 |
text(ticks1[i],ticks2[i],chr.ori[i],srt=angle,font=2,cex=cex.axis) |
|
|
620 |
} |
|
|
621 |
}else{ |
|
|
622 |
for(i in 1:length(ticks)){ |
|
|
623 |
angle=360*(1-(ticks-round(band/2))[i]/TotalN) |
|
|
624 |
text(ticks1[i],ticks2[i],chr.labels[i],srt=angle,font=2,cex=cex.axis) |
|
|
625 |
} |
|
|
626 |
} |
|
|
627 |
} |
|
|
628 |
} |
|
|
629 |
if(outward==FALSE){ |
|
|
630 |
if(cir.chr==TRUE){ |
|
|
631 |
# XLine=(2*cir.band+RR+cir.chr.h)*sin(2*pi*(1:TotalN)/TotalN) |
|
|
632 |
# YLine=(2*cir.band+RR+cir.chr.h)*cos(2*pi*(1:TotalN)/TotalN) |
|
|
633 |
# lines(XLine,YLine,lwd=1.5) |
|
|
634 |
|
|
|
635 |
polygon.num <- 1000 |
|
|
636 |
for(k in 1:length(chr)){ |
|
|
637 |
if(k==1){ |
|
|
638 |
polygon.index <- seq(round(band/2)+1,-round(band/2)+max(pvalue.posN.list[[1]]), length=polygon.num) |
|
|
639 |
X1chr=(2*cir.band+RR)*sin(2*pi*(polygon.index)/TotalN) |
|
|
640 |
Y1chr=(2*cir.band+RR)*cos(2*pi*(polygon.index)/TotalN) |
|
|
641 |
X2chr=(2*cir.band+RR+cir.chr.h)*sin(2*pi*(polygon.index)/TotalN) |
|
|
642 |
Y2chr=(2*cir.band+RR+cir.chr.h)*cos(2*pi*(polygon.index)/TotalN) |
|
|
643 |
if(is.null(chr.den.col)){ |
|
|
644 |
polygon(c(rev(X1chr),X2chr),c(rev(Y1chr),Y2chr),col=rep(colx,ceiling(length(chr)/length(colx)))[k],border=rep(colx,ceiling(length(chr)/length(colx)))[k]) |
|
|
645 |
}else{ |
|
|
646 |
if(cir.density){ |
|
|
647 |
polygon(c(rev(X1chr),X2chr),c(rev(Y1chr),Y2chr),col="grey",border="grey") |
|
|
648 |
}else{ |
|
|
649 |
polygon(c(rev(X1chr),X2chr),c(rev(Y1chr),Y2chr),col=chr.den.col,border=chr.den.col) |
|
|
650 |
} |
|
|
651 |
} |
|
|
652 |
}else{ |
|
|
653 |
polygon.index <- seq(1+round(band/2)+max(pvalue.posN.list[[k-1]]),-round(band/2)+max(pvalue.posN.list[[k]]), length=polygon.num) |
|
|
654 |
X1chr=(2*cir.band+RR)*sin(2*pi*(polygon.index)/TotalN) |
|
|
655 |
Y1chr=(2*cir.band+RR)*cos(2*pi*(polygon.index)/TotalN) |
|
|
656 |
X2chr=(2*cir.band+RR+cir.chr.h)*sin(2*pi*(polygon.index)/TotalN) |
|
|
657 |
Y2chr=(2*cir.band+RR+cir.chr.h)*cos(2*pi*(polygon.index)/TotalN) |
|
|
658 |
if(is.null(chr.den.col)){ |
|
|
659 |
polygon(c(rev(X1chr),X2chr),c(rev(Y1chr),Y2chr),col=rep(colx,ceiling(length(chr)/length(colx)))[k],border=rep(colx,ceiling(length(chr)/length(colx)))[k]) |
|
|
660 |
}else{ |
|
|
661 |
if(cir.density){ |
|
|
662 |
polygon(c(rev(X1chr),X2chr),c(rev(Y1chr),Y2chr),col="grey",border="grey") |
|
|
663 |
}else{ |
|
|
664 |
polygon(c(rev(X1chr),X2chr),c(rev(Y1chr),Y2chr),col=chr.den.col,border=chr.den.col) |
|
|
665 |
} |
|
|
666 |
} |
|
|
667 |
} |
|
|
668 |
} |
|
|
669 |
if(cir.density){ |
|
|
670 |
|
|
|
671 |
segments( |
|
|
672 |
(2*cir.band+RR)*sin(2*pi*(pvalue.posN-round(band/2))/TotalN), |
|
|
673 |
(2*cir.band+RR)*cos(2*pi*(pvalue.posN-round(band/2))/TotalN), |
|
|
674 |
(2*cir.band+RR+cir.chr.h)*sin(2*pi*(pvalue.posN-round(band/2))/TotalN), |
|
|
675 |
(2*cir.band+RR+cir.chr.h)*cos(2*pi*(pvalue.posN-round(band/2))/TotalN), |
|
|
676 |
col=density.list$den.col, lwd=0.1 |
|
|
677 |
) |
|
|
678 |
legend( |
|
|
679 |
x=RR+4*cir.chr.h, |
|
|
680 |
y=(RR+4*cir.chr.h)/2, |
|
|
681 |
title="", legend=density.list$legend.y, pch=15, pt.cex = 3, col=density.list$legend.col, |
|
|
682 |
cex=1, bty="n", |
|
|
683 |
y.intersp=1, |
|
|
684 |
x.intersp=1, |
|
|
685 |
yjust=0.5, xjust=0, xpd=TRUE |
|
|
686 |
) |
|
|
687 |
|
|
|
688 |
} |
|
|
689 |
|
|
|
690 |
if(cir.density){ |
|
|
691 |
circle.plot(myr=2*cir.band+RR+cir.chr.h,lwd=1.5,add=TRUE,col='grey') |
|
|
692 |
circle.plot(myr=2*cir.band+RR,lwd=1.5,add=TRUE,col='grey') |
|
|
693 |
}else{ |
|
|
694 |
circle.plot(myr=2*cir.band+RR+cir.chr.h,lwd=1.5,add=TRUE) |
|
|
695 |
circle.plot(myr=2*cir.band+RR,lwd=1.5,add=TRUE) |
|
|
696 |
} |
|
|
697 |
|
|
|
698 |
} |
|
|
699 |
|
|
|
700 |
X=(-Cpvalue+r+H*i+cir.band*(i-1))*sin(2*pi*(pvalue.posN-round(band/2))/TotalN) |
|
|
701 |
Y=(-Cpvalue+r+H*i+cir.band*(i-1))*cos(2*pi*(pvalue.posN-round(band/2))/TotalN) |
|
|
702 |
points(X,Y,pch=19,cex=cex[1],col=rep(rep(colx,N[i]),add[[i]])) |
|
|
703 |
|
|
|
704 |
if(cir.legend==TRUE){ |
|
|
705 |
|
|
|
706 |
#try to get the number after radix point |
|
|
707 |
if((Max-Min)<=1) { |
|
|
708 |
round.n=nchar(as.character(10^(-ceiling(-log10(Max)))))-1 |
|
|
709 |
}else{ |
|
|
710 |
round.n=2 |
|
|
711 |
} |
|
|
712 |
segments(0,r+H*(i-1)+cir.band*(i-1),0,r+H*i+cir.band*(i-1),col=cir.legend.col,lwd=1.5) |
|
|
713 |
segments(0,r+H*(i-1)+cir.band*(i-1),H/20,r+H*(i-1)+cir.band*(i-1),col=cir.legend.col,lwd=1.5) |
|
|
714 |
circle.plot(myr=r+H*(i-1)+cir.band*(i-1),lwd=0.5,add=TRUE,col='grey') |
|
|
715 |
segments(0,r+H*(i-0.75)+cir.band*(i-1),H/20,r+H*(i-0.75)+cir.band*(i-1),col=cir.legend.col,lwd=1.5) |
|
|
716 |
circle.plot(myr=r+H*(i-0.75)+cir.band*(i-1),lwd=0.5,add=TRUE,col='grey') |
|
|
717 |
segments(0,r+H*(i-0.5)+cir.band*(i-1),H/20,r+H*(i-0.5)+cir.band*(i-1),col=cir.legend.col,lwd=1.5) |
|
|
718 |
circle.plot(myr=r+H*(i-0.5)+cir.band*(i-1),lwd=0.5,add=TRUE,col='grey') |
|
|
719 |
segments(0,r+H*(i-0.25)+cir.band*(i-1),H/20,r+H*(i-0.25)+cir.band*(i-1),col=cir.legend.col,lwd=1.5) |
|
|
720 |
circle.plot(myr=r+H*(i-0.25)+cir.band*(i-1),lwd=0.5,add=TRUE,col='grey') |
|
|
721 |
segments(0,r+H*(i-0)+cir.band*(i-1),H/20,r+H*(i-0)+cir.band*(i-1),col=cir.legend.col,lwd=1.5) |
|
|
722 |
circle.plot(myr=r+H*(i-0)+cir.band*(i-1),lwd=0.5,add=TRUE,col='grey') |
|
|
723 |
text(-r/15,r+H*(i-0.06)+cir.band*(i-1),round(Min+(Max-Min)*0,round.n),adj=1,col=cir.legend.col,cex=cir.legend.cex,font=2) |
|
|
724 |
text(-r/15,r+H*(i-0.25)+cir.band*(i-1),round(Min+(Max-Min)*0.25,round.n),adj=1,col=cir.legend.col,cex=cir.legend.cex,font=2) |
|
|
725 |
text(-r/15,r+H*(i-0.5)+cir.band*(i-1),round(Min+(Max-Min)*0.5,round.n),adj=1,col=cir.legend.col,cex=cir.legend.cex,font=2) |
|
|
726 |
text(-r/15,r+H*(i-0.75)+cir.band*(i-1),round(Min+(Max-Min)*0.75,round.n),adj=1,col=cir.legend.col,cex=cir.legend.cex,font=2) |
|
|
727 |
text(-r/15,r+H*(i-0.94)+cir.band*(i-1),round(Min+(Max-Min)*1,round.n),adj=1,col=cir.legend.col,cex=cir.legend.cex,font=2) |
|
|
728 |
} |
|
|
729 |
|
|
|
730 |
if(!is.null(threshold)){ |
|
|
731 |
if(sum(threshold!=0)==length(threshold)){ |
|
|
732 |
|
|
|
733 |
for(thr in 1:length(threshold)){ |
|
|
734 |
significantline1=ifelse(LOG10, H*(-log10(threshold[thr])-Min)/(Max-Min), H*(threshold[thr]-Min)/(Max-Min)) |
|
|
735 |
#s1X=(significantline1+r+H*(i-1)+cir.band*(i-1))*sin(2*pi*(0:TotalN)/TotalN) |
|
|
736 |
#s1Y=(significantline1+r+H*(i-1)+cir.band*(i-1))*cos(2*pi*(0:TotalN)/TotalN) |
|
|
737 |
if(significantline1<H){ |
|
|
738 |
#lines(s1X,s1Y,type="l",col=threshold.col,lwd=threshold.col,lty=threshold.lty) |
|
|
739 |
circle.plot(myr=(-significantline1+r+H*i+cir.band*(i-1)),col=threshold.col[thr],lwd=threshold.lwd[thr],lty=threshold.lty[thr]) |
|
|
740 |
}else{ |
|
|
741 |
warning(paste("No significant points for ",taxa[i]," pass the threshold level using threshold=",threshold[thr],"!",sep="")) |
|
|
742 |
} |
|
|
743 |
} |
|
|
744 |
if(amplify==TRUE){ |
|
|
745 |
if(LOG10){ |
|
|
746 |
threshold <- sort(threshold) |
|
|
747 |
significantline1=H*(-log10(max(threshold))-Min)/(Max-Min) |
|
|
748 |
}else{ |
|
|
749 |
threshold <- sort(threshold, decreasing=TRUE) |
|
|
750 |
significantline1=H*(min(threshold)-Min)/(Max-Min) |
|
|
751 |
} |
|
|
752 |
p_amp.index <- which(Cpvalue>=significantline1) |
|
|
753 |
HX1=(-Cpvalue[p_amp.index]+r+H*i+cir.band*(i-1))*sin(2*pi*(pvalue.posN[p_amp.index]-round(band/2))/TotalN) |
|
|
754 |
HY1=(-Cpvalue[p_amp.index]+r+H*i+cir.band*(i-1))*cos(2*pi*(pvalue.posN[p_amp.index]-round(band/2))/TotalN) |
|
|
755 |
|
|
|
756 |
#cover the points that exceed the threshold with the color "white" |
|
|
757 |
points(HX1,HY1,pch=19,cex=cex[1],col="white") |
|
|
758 |
|
|
|
759 |
for(ll in 1:length(threshold)){ |
|
|
760 |
if(ll == 1){ |
|
|
761 |
if(LOG10){ |
|
|
762 |
significantline1=H*(-log10(threshold[ll])-Min)/(Max-Min) |
|
|
763 |
}else{ |
|
|
764 |
significantline1=H*(threshold[ll]-Min)/(Max-Min) |
|
|
765 |
} |
|
|
766 |
p_amp.index <- which(Cpvalue>=significantline1) |
|
|
767 |
HX1=(-Cpvalue[p_amp.index]+r+H*i+cir.band*(i-1))*sin(2*pi*(pvalue.posN[p_amp.index]-round(band/2))/TotalN) |
|
|
768 |
HY1=(-Cpvalue[p_amp.index]+r+H*i+cir.band*(i-1))*cos(2*pi*(pvalue.posN[p_amp.index]-round(band/2))/TotalN) |
|
|
769 |
}else{ |
|
|
770 |
if(LOG10){ |
|
|
771 |
significantline0=H*(-log10(threshold[ll-1])-Min)/(Max-Min) |
|
|
772 |
significantline1=H*(-log10(threshold[ll])-Min)/(Max-Min) |
|
|
773 |
}else{ |
|
|
774 |
significantline0=H*(threshold[ll-1]-Min)/(Max-Min) |
|
|
775 |
significantline1=H*(threshold[ll]-Min)/(Max-Min) |
|
|
776 |
} |
|
|
777 |
p_amp.index <- which(Cpvalue>=significantline1 & Cpvalue < significantline0) |
|
|
778 |
HX1=(-Cpvalue[p_amp.index]+r+H*i+cir.band*(i-1))*sin(2*pi*(pvalue.posN[p_amp.index]-round(band/2))/TotalN) |
|
|
779 |
HY1=(-Cpvalue[p_amp.index]+r+H*i+cir.band*(i-1))*cos(2*pi*(pvalue.posN[p_amp.index]-round(band/2))/TotalN) |
|
|
780 |
|
|
|
781 |
} |
|
|
782 |
|
|
|
783 |
if(is.null(signal.col)){ |
|
|
784 |
points(HX1,HY1,pch=signal.pch[ll],cex=signal.cex[ll]*cex[1],col=rep(rep(colx,N[i]),add[[i]])[p_amp.index]) |
|
|
785 |
}else{ |
|
|
786 |
points(HX1,HY1,pch=signal.pch[ll],cex=signal.cex[ll]*cex[1],col=signal.col[ll]) |
|
|
787 |
} |
|
|
788 |
} |
|
|
789 |
} |
|
|
790 |
} |
|
|
791 |
} |
|
|
792 |
|
|
|
793 |
if(cir.chr==TRUE){ |
|
|
794 |
ticks1=1.1*(2*cir.band+RR)*sin(2*pi*(ticks-round(band/2))/TotalN) |
|
|
795 |
ticks2=1.1*(2*cir.band+RR)*cos(2*pi*(ticks-round(band/2))/TotalN) |
|
|
796 |
if(is.null(chr.labels)){ |
|
|
797 |
for(i in 1:length(ticks)){ |
|
|
798 |
angle=360*(1-(ticks-round(band/2))[i]/TotalN) |
|
|
799 |
text(ticks1[i],ticks2[i],chr.ori[i],srt=angle,font=2,cex=cex.axis) |
|
|
800 |
} |
|
|
801 |
}else{ |
|
|
802 |
for(i in 1:length(ticks)){ |
|
|
803 |
angle=360*(1-(ticks-round(band/2))[i]/TotalN) |
|
|
804 |
text(ticks1[i],ticks2[i],chr.labels[i],srt=angle,font=2,cex=cex.axis) |
|
|
805 |
} |
|
|
806 |
} |
|
|
807 |
}else{ |
|
|
808 |
ticks1=1.0*(RR+cir.band)*sin(2*pi*(ticks-round(band/2))/TotalN) |
|
|
809 |
ticks2=1.0*(RR+cir.band)*cos(2*pi*(ticks-round(band/2))/TotalN) |
|
|
810 |
if(is.null(chr.labels)){ |
|
|
811 |
for(i in 1:length(ticks)){ |
|
|
812 |
|
|
|
813 |
#adjust the angle of labels of circle plot |
|
|
814 |
angle=360*(1-(ticks-round(band/2))[i]/TotalN) |
|
|
815 |
text(ticks1[i],ticks2[i],chr.ori[i],srt=angle,font=2,cex=cex.axis) |
|
|
816 |
} |
|
|
817 |
}else{ |
|
|
818 |
for(i in 1:length(ticks)){ |
|
|
819 |
angle=360*(1-(ticks-round(band/2))[i]/TotalN) |
|
|
820 |
text(ticks1[i],ticks2[i],chr.labels[i],srt=angle,font=2,cex=cex.axis) |
|
|
821 |
} |
|
|
822 |
} |
|
|
823 |
} |
|
|
824 |
} |
|
|
825 |
} |
|
|
826 |
if(file.output) dev.off() |
|
|
827 |
#print("Circular-Manhattan has been finished!",quote=F) |
|
|
828 |
} |
|
|
829 |
|
|
|
830 |
if("m" %in% plot.type){ |
|
|
831 |
if(multracks==FALSE){ |
|
|
832 |
#print("Starting Rectangular-Manhattan plot!",quote=F) |
|
|
833 |
for(i in 1:R){ |
|
|
834 |
colx=col[i,] |
|
|
835 |
colx=colx[!is.na(colx)] |
|
|
836 |
if(verbose) print(paste("Rectangular_Manhattan Plotting ",taxa[i],"...",sep="")) |
|
|
837 |
if(file.output){ |
|
|
838 |
if(file=="jpg") jpeg(paste("Manhattan.",taxa[i],".jpg",sep=""), width = 14*dpi,height=5*dpi,res=dpi,quality = 100) |
|
|
839 |
if(file=="pdf") pdf(paste("Manhattan.",taxa[i],".pdf",sep=""), width = 15,height=6) |
|
|
840 |
if(file=="tiff") tiff(paste("Manhattan.",taxa[i],".tiff",sep=""), width = 14*dpi,height=5*dpi,res=dpi) |
|
|
841 |
par(mar = c(5,6,4,3),xaxs=xaxs,yaxs=yaxs,xpd=TRUE) |
|
|
842 |
} |
|
|
843 |
if(!file.output){ |
|
|
844 |
if(is.null(dev.list())) dev.new(width = 15, height = 6) |
|
|
845 |
par(xpd=TRUE) |
|
|
846 |
} |
|
|
847 |
|
|
|
848 |
pvalue=pvalueT[,i] |
|
|
849 |
logpvalue=logpvalueT[,i] |
|
|
850 |
if(is.null(ylim)){ |
|
|
851 |
if(!is.null(threshold)){ |
|
|
852 |
if(sum(threshold!=0)==length(threshold)){ |
|
|
853 |
if(LOG10 == TRUE){ |
|
|
854 |
Max=max(ceiling(-log10(min(pvalue[pvalue!=0]))),ceiling(-log10(min(threshold)))) |
|
|
855 |
Min <- 0 |
|
|
856 |
}else{ |
|
|
857 |
Max=max(ceiling(max(pvalue[pvalue!=Inf])),max(threshold)) |
|
|
858 |
if(abs(Max)<=1) Max=max(max(pvalue[pvalue!=Inf]),max(threshold)) |
|
|
859 |
Min <- min(floor(min(pvalue[pvalue!=Inf])),min(threshold)) |
|
|
860 |
if(abs(Min)<=1) Min=min(min(pvalue[pvalue!=Inf]),min(threshold)) |
|
|
861 |
} |
|
|
862 |
}else{ |
|
|
863 |
if(LOG10){ |
|
|
864 |
Max=max(ceiling(-log10(min(pvalue[pvalue!=0])))) |
|
|
865 |
Min<-0 |
|
|
866 |
}else{ |
|
|
867 |
Max=ceiling(max(pvalue[pvalue!=Inf])) |
|
|
868 |
if(abs(Max)<=1) Max=max(max(pvalue[pvalue!=Inf])) |
|
|
869 |
Min<-floor(min(pvalue[pvalue!=Inf])) |
|
|
870 |
if(abs(Min)<=1) Min=min(pvalue[pvalue!=Inf]) |
|
|
871 |
# }else{ |
|
|
872 |
# Max=max(ceiling(max(pvalue[pvalue!=Inf]))) |
|
|
873 |
# } |
|
|
874 |
} |
|
|
875 |
} |
|
|
876 |
}else{ |
|
|
877 |
if(LOG10){ |
|
|
878 |
Max=max(ceiling(-log10(min(pvalue[pvalue!=0])))) |
|
|
879 |
Min=0 |
|
|
880 |
}else{ |
|
|
881 |
Max=ceiling(max(pvalue[pvalue!=Inf])) |
|
|
882 |
if(abs(Max)<=1) Max=max(pvalue[pvalue!=Inf]) |
|
|
883 |
Min=floor(min(pvalue[pvalue!=Inf])) |
|
|
884 |
if(abs(Min)<=1) Min=min(pvalue[pvalue!=Inf]) |
|
|
885 |
# }else{ |
|
|
886 |
# Max=max(ceiling(max(pvalue[pvalue!=Inf]))) |
|
|
887 |
# } |
|
|
888 |
} |
|
|
889 |
} |
|
|
890 |
if((Max-Min)<=1){ |
|
|
891 |
if(cir.density){ |
|
|
892 |
plot(pvalue.posN,logpvalue,pch=pch,cex=cex[2],col=rep(rep(colx,N[i]),add[[i]]),xlim=c(0,1.01*max(pvalue.posN)),ylim=c(Min-(Max-Min)/den.fold, Max+10^(-ceiling(-log10(abs(Max))))),ylab=ylab, |
|
|
893 |
cex.axis=cex.axis,cex.lab=2,font=2,axes=FALSE,xlab=xlab,main=taxa) |
|
|
894 |
}else{ |
|
|
895 |
plot(pvalue.posN,logpvalue,pch=pch,cex=cex[2],col=rep(rep(colx,N[i]),add[[i]]),xlim=c(0,max(pvalue.posN)),ylim=c(Min,Max+10^(-ceiling(-log10(abs(Max))))),ylab=ylab, |
|
|
896 |
cex.axis=cex.axis,cex.lab=2,font=2,axes=FALSE,xlab=xlab,main=taxa) |
|
|
897 |
} |
|
|
898 |
}else{ |
|
|
899 |
if(cir.density){ |
|
|
900 |
plot(pvalue.posN,logpvalue,pch=pch,cex=cex[2],col=rep(rep(colx,N[i]),add[[i]]),xlim=c(0,1.01*max(pvalue.posN)),ylim=c(Min-(Max-Min)/den.fold,Max),ylab=ylab, |
|
|
901 |
cex.axis=cex.axis,cex.lab=2,font=2,axes=FALSE,xlab=xlab,main=taxa) |
|
|
902 |
}else{ |
|
|
903 |
plot(pvalue.posN,logpvalue,pch=pch,cex=cex[2],col=rep(rep(colx,N[i]),add[[i]]),xlim=c(0,max(pvalue.posN)),ylim=c(Min,Max),ylab=ylab, |
|
|
904 |
cex.axis=cex.axis,cex.lab=2,font=2,axes=FALSE,xlab=xlab,main=taxa) |
|
|
905 |
} |
|
|
906 |
} |
|
|
907 |
}else{ |
|
|
908 |
Max <- max(ylim) |
|
|
909 |
Min <- min(ylim) |
|
|
910 |
if(cir.density){ |
|
|
911 |
plot(pvalue.posN[logpvalue>=min(ylim)],logpvalue[logpvalue>=min(ylim)],pch=pch,cex=cex[2],col=rep(rep(colx,N[i]),add[[i]])[logpvalue>=min(ylim)],xlim=c(0,1.01*max(pvalue.posN)),ylim=c(min(ylim)-(Max-Min)/den.fold, max(ylim)),ylab=ylab, |
|
|
912 |
cex.axis=cex.axis,cex.lab=2,font=2,axes=FALSE,xlab=xlab,main=taxa) |
|
|
913 |
}else{ |
|
|
914 |
plot(pvalue.posN[logpvalue>=min(ylim)],logpvalue[logpvalue>=min(ylim)],pch=pch,cex=cex[2],col=rep(rep(colx,N[i]),add[[i]])[logpvalue>=min(ylim)],xlim=c(0,max(pvalue.posN)),ylim=ylim,ylab=ylab, |
|
|
915 |
cex.axis=cex.axis,cex.lab=2,font=2,axes=FALSE,xlab=xlab,main=taxa) |
|
|
916 |
} |
|
|
917 |
} |
|
|
918 |
Max1 <- Max |
|
|
919 |
Min1 <- Min |
|
|
920 |
if(abs(Max) <= 1) Max <- round(Max, ceiling(-log10(abs(Max)))) |
|
|
921 |
if(abs(Min) <= 1) Min <- round(Min, ceiling(-log10(abs(Min)))) |
|
|
922 |
if(is.null(chr.labels)){ |
|
|
923 |
axis(1, at=c(0,ticks),cex.axis=cex.axis,font=2,labels=c("Chr",chr.ori)) |
|
|
924 |
}else{ |
|
|
925 |
axis(1, at=c(0,ticks),cex.axis=cex.axis,font=2,labels=c("Chr",chr.labels)) |
|
|
926 |
} |
|
|
927 |
if(is.null(ylim)){ |
|
|
928 |
if((Max-Min)>1){ |
|
|
929 |
axis(2,at=seq(Min,(Max),ceiling((Max-Min)/10)),cex.axis=cex.axis,font=2,labels=round(seq(Min,(Max),ceiling((Max-Min)/10)), 2)) |
|
|
930 |
legend.y <- tail(round(seq(Min,(Max),ceiling((Max-Min)/10)), 2), 1) |
|
|
931 |
}else{ |
|
|
932 |
axis(2,at=seq(Min,Max+10^(-ceiling(-log10(abs(Max)))),10^(-ceiling(-log10(max(abs(c(Max, Min))))))),cex.axis=cex.axis,font=2,labels=seq(Min,Max+10^(-ceiling(-log10(abs(Max)))),10^(-ceiling(-log10(max(abs(c(Max, Min)))))))) |
|
|
933 |
legend.y <- tail(seq(Min,Max+10^(-ceiling(-log10(abs(Max)))),10^(-ceiling(-log10(max(abs(c(Max, Min))))))), 1) |
|
|
934 |
} |
|
|
935 |
}else{ |
|
|
936 |
if(ylim[2]>1){ |
|
|
937 |
axis(2,at=seq(min(ylim),ylim[2],ceiling((ylim[2])/10)),cex.axis=cex.axis,font=2,labels=round(seq(min(ylim),(ylim[2]),ceiling((ylim[2])/10)), 2)) |
|
|
938 |
legend.y <- tail(ylim[2], 1) |
|
|
939 |
}else{ |
|
|
940 |
axis(2,at=seq(min(ylim),ylim[2],10^(-ceiling(-log10(max(abs(ylim)))))),cex.axis=cex.axis,font=2,labels=seq(min(ylim),ylim[2],10^(-ceiling(-log10(max(abs(ylim))))))) |
|
|
941 |
legend.y <- tail(ylim[2], 1) |
|
|
942 |
} |
|
|
943 |
} |
|
|
944 |
if(!is.null(threshold)){ |
|
|
945 |
if(sum(threshold!=0)==length(threshold)){ |
|
|
946 |
for(thr in 1:length(threshold)){ |
|
|
947 |
h <- ifelse(LOG10, -log10(threshold[thr]), threshold[thr]) |
|
|
948 |
# print(h) |
|
|
949 |
# print(threshold.col[thr]) |
|
|
950 |
# print(threshold.lty[thr]) |
|
|
951 |
# print(threshold.lwd[thr]) |
|
|
952 |
par(xpd=FALSE); abline(h=h,col=threshold.col[thr],lty=threshold.lty[thr],lwd=threshold.lwd[thr]); par(xpd=TRUE) |
|
|
953 |
} |
|
|
954 |
if(amplify == TRUE){ |
|
|
955 |
if(LOG10){ |
|
|
956 |
threshold <- sort(threshold) |
|
|
957 |
sgline1=-log10(max(threshold)) |
|
|
958 |
}else{ |
|
|
959 |
threshold <- sort(threshold, decreasing=TRUE) |
|
|
960 |
sgline1=min(threshold) |
|
|
961 |
} |
|
|
962 |
|
|
|
963 |
sgindex=which(logpvalue>=sgline1) |
|
|
964 |
HY1=logpvalue[sgindex] |
|
|
965 |
HX1=pvalue.posN[sgindex] |
|
|
966 |
|
|
|
967 |
#cover the points that exceed the threshold with the color "white" |
|
|
968 |
points(HX1,HY1,pch=pch,cex=cex[2],col="white") |
|
|
969 |
|
|
|
970 |
for(ll in 1:length(threshold)){ |
|
|
971 |
if(ll == 1){ |
|
|
972 |
if(LOG10){ |
|
|
973 |
sgline1=-log10(threshold[ll]) |
|
|
974 |
}else{ |
|
|
975 |
sgline1=threshold[ll] |
|
|
976 |
} |
|
|
977 |
sgindex=which(logpvalue>=sgline1) |
|
|
978 |
HY1=logpvalue[sgindex] |
|
|
979 |
HX1=pvalue.posN[sgindex] |
|
|
980 |
}else{ |
|
|
981 |
if(LOG10){ |
|
|
982 |
sgline0=-log10(threshold[ll-1]) |
|
|
983 |
sgline1=-log10(threshold[ll]) |
|
|
984 |
}else{ |
|
|
985 |
sgline0=threshold[ll-1] |
|
|
986 |
sgline1=threshold[ll] |
|
|
987 |
} |
|
|
988 |
sgindex=which(logpvalue>=sgline1 & logpvalue < sgline0) |
|
|
989 |
HY1=logpvalue[sgindex] |
|
|
990 |
HX1=pvalue.posN[sgindex] |
|
|
991 |
} |
|
|
992 |
|
|
|
993 |
if(is.null(signal.col)){ |
|
|
994 |
points(HX1,HY1,pch=signal.pch[ll],cex=signal.cex[ll]*cex[2],col=rep(rep(colx,N[i]),add[[i]])[sgindex]) |
|
|
995 |
}else{ |
|
|
996 |
points(HX1,HY1,pch=signal.pch[ll],cex=signal.cex[ll]*cex[2],col=signal.col[ll]) |
|
|
997 |
} |
|
|
998 |
|
|
|
999 |
} |
|
|
1000 |
} |
|
|
1001 |
} |
|
|
1002 |
} |
|
|
1003 |
if(is.null(ylim)){ymin <- Min1}else{ymin <- min(ylim)} |
|
|
1004 |
if(cir.density){ |
|
|
1005 |
for(yll in 1:length(pvalue.posN.list)){ |
|
|
1006 |
polygon(c(min(pvalue.posN.list[[yll]]), min(pvalue.posN.list[[yll]]), max(pvalue.posN.list[[yll]]), max(pvalue.posN.list[[yll]])), |
|
|
1007 |
c(ymin-0.5*(Max-Min)/den.fold, ymin-1.5*(Max-Min)/den.fold, |
|
|
1008 |
ymin-1.5*(Max-Min)/den.fold, ymin-0.5*(Max-Min)/den.fold), |
|
|
1009 |
col="grey", border="grey") |
|
|
1010 |
} |
|
|
1011 |
|
|
|
1012 |
segments( |
|
|
1013 |
pvalue.posN, |
|
|
1014 |
ymin-0.5*(Max-Min)/den.fold, |
|
|
1015 |
pvalue.posN, |
|
|
1016 |
ymin-1.5*(Max-Min)/den.fold, |
|
|
1017 |
col=density.list$den.col, lwd=0.1 |
|
|
1018 |
) |
|
|
1019 |
legend( |
|
|
1020 |
x=max(pvalue.posN)+band, |
|
|
1021 |
y=legend.y, |
|
|
1022 |
title="", legend=density.list$legend.y, pch=15, pt.cex = 2.5, col=density.list$legend.col, |
|
|
1023 |
cex=0.8, bty="n", |
|
|
1024 |
y.intersp=1, |
|
|
1025 |
x.intersp=1, |
|
|
1026 |
yjust=1, xjust=0, xpd=TRUE |
|
|
1027 |
) |
|
|
1028 |
|
|
|
1029 |
} |
|
|
1030 |
if(box) box() |
|
|
1031 |
#if(!is.null(threshold) & (length(grep("FarmCPU",taxa[i])) != 0)) abline(v=which(pvalueT[,i] < min(threshold)/max(dim(Pmap))),col="grey",lty=2,lwd=signal.line) |
|
|
1032 |
if(file.output) dev.off() |
|
|
1033 |
} |
|
|
1034 |
#print("Rectangular-Manhattan has been finished!",quote=F) |
|
|
1035 |
}else{ |
|
|
1036 |
#print("Starting Rectangular-Manhattan plot!",quote=F) |
|
|
1037 |
#print("Plotting in multiple tracks!",quote=F) |
|
|
1038 |
if(file.output){ |
|
|
1039 |
if(file=="jpg") jpeg(paste("Multracks.Rectangular-Manhattan.",paste(taxa,collapse="."),".jpg",sep=""), width = 14*dpi,height=5*dpi*R,res=dpi,quality = 100) |
|
|
1040 |
if(file=="pdf") pdf(paste("Multracks.Rectangular-Manhattan.",paste(taxa,collapse="."),".pdf",sep=""), width = 15,height=6*R) |
|
|
1041 |
if(file=="tiff") tiff(paste("Multracks.Rectangular-Manhattan.",paste(taxa,collapse="."),".tiff",sep=""), width = 14*dpi,height=5*dpi*R,res=dpi) |
|
|
1042 |
par(mfcol=c(R,1),mar=c(0, 6+(R-1)*2, 0, 2),oma=c(4,0,4,0),xaxs=xaxs,yaxs=yaxs,xpd=TRUE) |
|
|
1043 |
} |
|
|
1044 |
if(!file.output){ |
|
|
1045 |
if(is.null(dev.list())) dev.new(width = 15, height = 6) |
|
|
1046 |
par(xpd=TRUE) |
|
|
1047 |
} |
|
|
1048 |
for(i in 1:R){ |
|
|
1049 |
if(verbose) print(paste("Multracks_Rectangular Plotting ",taxa[i],"...",sep="")) |
|
|
1050 |
colx=col[i,] |
|
|
1051 |
colx=colx[!is.na(colx)] |
|
|
1052 |
pvalue=pvalueT[,i] |
|
|
1053 |
logpvalue=logpvalueT[,i] |
|
|
1054 |
if(is.null(ylim)){ |
|
|
1055 |
if(!is.null(threshold)){ |
|
|
1056 |
if(sum(threshold!=0)==length(threshold)){ |
|
|
1057 |
if(LOG10){ |
|
|
1058 |
Max=max(ceiling(-log10(min(pvalue[pvalue!=0]))),-log10(min(threshold))) |
|
|
1059 |
Min <- 0 |
|
|
1060 |
}else{ |
|
|
1061 |
Max=max(ceiling(max(pvalue[pvalue!=Inf])),max(threshold)) |
|
|
1062 |
if(abs(Max)<=1) Max=max(max(pvalue[pvalue!=Inf]),max(threshold)) |
|
|
1063 |
Min<-min(floor(min(pvalue[pvalue!=Inf])),min(threshold)) |
|
|
1064 |
if(abs(Min)<=1) Min=min(min(pvalue[pvalue!=Inf]),min(threshold)) |
|
|
1065 |
} |
|
|
1066 |
}else{ |
|
|
1067 |
if(LOG10){ |
|
|
1068 |
Max=max(ceiling(-log10(min(pvalue[pvalue!=0])))) |
|
|
1069 |
Min<-0 |
|
|
1070 |
}else{ |
|
|
1071 |
Max=max(ceiling(max(pvalue[pvalue!=Inf]))) |
|
|
1072 |
if(abs(Max)<=1) Max=max(max(pvalue[pvalue!=Inf])) |
|
|
1073 |
Min=min(floor(min(pvalue[pvalue!=Inf]))) |
|
|
1074 |
if(abs(Min)<=1) Min=min(min(pvalue[pvalue!=Inf])) |
|
|
1075 |
# }else{ |
|
|
1076 |
# Max=max(ceiling(max(pvalue[pvalue!=Inf]))) |
|
|
1077 |
# } |
|
|
1078 |
} |
|
|
1079 |
} |
|
|
1080 |
}else{ |
|
|
1081 |
if(LOG10){ |
|
|
1082 |
Max=max(ceiling(-log10(min(pvalue[pvalue!=0])))) |
|
|
1083 |
Min=0 |
|
|
1084 |
}else{ |
|
|
1085 |
Max=max(ceiling(max(pvalue[pvalue!=Inf]))) |
|
|
1086 |
if(abs(Max)<=1) Max=max(max(pvalue[pvalue!=Inf])) |
|
|
1087 |
Min <- min(ceiling(min(pvalue[pvalue!=Inf]))) |
|
|
1088 |
if(abs(Min)<=1) Min=min(min(pvalue[pvalue!=Inf])) |
|
|
1089 |
# }else{ |
|
|
1090 |
# Max=max(ceiling(max(pvalue[pvalue!=Inf]))) |
|
|
1091 |
# } |
|
|
1092 |
} |
|
|
1093 |
} |
|
|
1094 |
xn <- ifelse(R == 1, R, R * 2/3) |
|
|
1095 |
if((Max-Min)<=1){ |
|
|
1096 |
plot(pvalue.posN,logpvalue,pch=pch,cex=cex[2]*xn,col=rep(rep(colx,N[i]),add[[i]]),xlim=c(0,max(pvalue.posN)+band),ylim=c(Min,Max+10^(-ceiling(-log10(abs(Max))))),ylab=ylab, |
|
|
1097 |
cex.axis=cex.axis*xn,cex.lab=2*xn,font=2,axes=FALSE) |
|
|
1098 |
}else{ |
|
|
1099 |
plot(pvalue.posN,logpvalue,pch=pch,cex=cex[2]*xn,col=rep(rep(colx,N[i]),add[[i]]),xlim=c(0,max(pvalue.posN)+band),ylim=c(Min,Max),ylab=ylab, |
|
|
1100 |
cex.axis=cex.axis*xn,cex.lab=2*xn,font=2,axes=FALSE) |
|
|
1101 |
} |
|
|
1102 |
}else{ |
|
|
1103 |
xn <- ifelse(R == 1, R, R * 2/3) |
|
|
1104 |
Max <- max(ylim) |
|
|
1105 |
Min <- min(ylim) |
|
|
1106 |
plot(pvalue.posN[logpvalue>=min(ylim)],logpvalue[logpvalue>=min(ylim)],pch=pch,cex=cex[2]*xn,col=rep(rep(colx,N[i]),add[[i]])[logpvalue>=min(ylim)],xlim=c(0,max(pvalue.posN)+band),ylim=ylim,ylab=ylab, |
|
|
1107 |
cex.axis=cex.axis*xn,cex.lab=2*xn,font=2,axes=FALSE) |
|
|
1108 |
} |
|
|
1109 |
Max1 <- Max |
|
|
1110 |
Min1 <- Min |
|
|
1111 |
if(abs(Max) <= 1) Max <- round(Max, ceiling(-log10(abs(Max)))) |
|
|
1112 |
if(abs(Min) <= 1) Min <- round(Min, ceiling(-log10(abs(Min)))) |
|
|
1113 |
|
|
|
1114 |
#add the names of traits on plot |
|
|
1115 |
if((Max-Min)<=1){ |
|
|
1116 |
text(ticks[1],Max+10^(-ceiling(-log10(abs(Max)))),labels=taxa[i],adj=0,font=3,cex=xn) |
|
|
1117 |
}else{ |
|
|
1118 |
text(ticks[1],Max+1,labels=taxa[i],adj=0,font=3,cex=xn) |
|
|
1119 |
} |
|
|
1120 |
if(i == R){ |
|
|
1121 |
if(is.null(chr.labels)){ |
|
|
1122 |
axis(1, at=c(0,ticks),cex.axis=cex.axis*xn,font=2,labels=c("Chr",chr.ori),padj=(xn-1)/2) |
|
|
1123 |
}else{ |
|
|
1124 |
axis(1, at=c(0,ticks),cex.axis=cex.axis*xn,font=2,labels=c("Chr",chr.labels),padj=(xn-1)/2) |
|
|
1125 |
} |
|
|
1126 |
} |
|
|
1127 |
#if(i==1) mtext("Manhattan plot",side=3,padj=-1,font=2,cex=xn) |
|
|
1128 |
if(is.null(ylim)){ |
|
|
1129 |
if((Max-Min)>1){ |
|
|
1130 |
axis(2,at=seq(Min,(Max),ceiling((Max-Min)/10)),cex.axis=cex.axis*xn,font=2,labels=round(seq(Min,(Max),ceiling((Max-Min)/10)), 2)) |
|
|
1131 |
}else{ |
|
|
1132 |
axis(2,at=seq(Min,Max+10^(-ceiling(-log10(abs(Max)))),10^(-ceiling(-log10(max(abs(c(Max, Min))))))),cex.axis=cex.axis*xn,font=2,labels=seq(0,Max+10^(-ceiling(-log10(abs(Max)))),10^(-ceiling(-log10(max(abs(c(Max, Min)))))))) |
|
|
1133 |
} |
|
|
1134 |
}else{ |
|
|
1135 |
if(ylim[2]>1){ |
|
|
1136 |
axis(2,at=seq(min(ylim),(ylim[2]),ceiling((ylim[2])/10)),cex.axis=cex.axis*xn,font=2,labels=round(seq(min(ylim),(ylim[2]),ceiling((ylim[2])/10)), 2)) |
|
|
1137 |
}else{ |
|
|
1138 |
axis(2,at=seq(min(ylim),ylim[2],10^(-ceiling(-log10(max(abs(ylim)))))),cex.axis=cex.axis*xn,font=2,labels=seq(min(ylim),ylim[2],10^(-ceiling(-log10(max(abs(ylim))))))) |
|
|
1139 |
} |
|
|
1140 |
} |
|
|
1141 |
if(!is.null(threshold)){ |
|
|
1142 |
if(sum(threshold!=0)==length(threshold)){ |
|
|
1143 |
for(thr in 1:length(threshold)){ |
|
|
1144 |
h <- ifelse(LOG10, -log10(threshold[thr]), threshold[thr]) |
|
|
1145 |
par(xpd=FALSE); abline(h=h,col=threshold.col[thr],lwd=threshold.lwd[thr],lty=threshold.lty[thr]); par(xpd=TRUE) |
|
|
1146 |
} |
|
|
1147 |
if(amplify==TRUE){ |
|
|
1148 |
if(LOG10){ |
|
|
1149 |
threshold <- sort(threshold) |
|
|
1150 |
sgline1=-log10(max(threshold)) |
|
|
1151 |
}else{ |
|
|
1152 |
threshold <- sort(threshold, decreasing=TRUE) |
|
|
1153 |
sgline1=min(threshold) |
|
|
1154 |
} |
|
|
1155 |
sgindex=which(logpvalue>=sgline1) |
|
|
1156 |
HY1=logpvalue[sgindex] |
|
|
1157 |
HX1=pvalue.posN[sgindex] |
|
|
1158 |
|
|
|
1159 |
#cover the points that exceed the threshold with the color "white" |
|
|
1160 |
points(HX1,HY1,pch=pch,cex=cex[2]*xn,col="white") |
|
|
1161 |
|
|
|
1162 |
for(ll in 1:length(threshold)){ |
|
|
1163 |
if(ll == 1){ |
|
|
1164 |
if(LOG10){ |
|
|
1165 |
sgline1=-log10(threshold[ll]) |
|
|
1166 |
}else{ |
|
|
1167 |
sgline1=threshold[ll] |
|
|
1168 |
} |
|
|
1169 |
sgindex=which(logpvalue>=sgline1) |
|
|
1170 |
HY1=logpvalue[sgindex] |
|
|
1171 |
HX1=pvalue.posN[sgindex] |
|
|
1172 |
}else{ |
|
|
1173 |
if(LOG10){ |
|
|
1174 |
sgline0=-log10(threshold[ll-1]) |
|
|
1175 |
sgline1=-log10(threshold[ll]) |
|
|
1176 |
}else{ |
|
|
1177 |
sgline0=threshold[ll-1] |
|
|
1178 |
sgline1=threshold[ll] |
|
|
1179 |
} |
|
|
1180 |
sgindex=which(logpvalue>=sgline1 & logpvalue < sgline0) |
|
|
1181 |
HY1=logpvalue[sgindex] |
|
|
1182 |
HX1=pvalue.posN[sgindex] |
|
|
1183 |
} |
|
|
1184 |
|
|
|
1185 |
if(is.null(signal.col)){ |
|
|
1186 |
points(HX1,HY1,pch=signal.pch[ll],cex=signal.cex[ll]*cex[2]*xn,col=rep(rep(colx,N[i]),add[[i]])[sgindex]) |
|
|
1187 |
}else{ |
|
|
1188 |
points(HX1,HY1,pch=signal.pch[ll],cex=signal.cex[ll]*cex[2]*xn,col=signal.col[ll]) |
|
|
1189 |
} |
|
|
1190 |
|
|
|
1191 |
} |
|
|
1192 |
} |
|
|
1193 |
} |
|
|
1194 |
} |
|
|
1195 |
#if(!is.null(threshold) & (length(grep("FarmCPU",taxa[i])) != 0)) abline(v=which(pvalueT[,i] < min(threshold)/max(dim(Pmap))),col="grey",lty=2,lwd=signal.line) |
|
|
1196 |
} |
|
|
1197 |
|
|
|
1198 |
#add the labels of X-axis |
|
|
1199 |
#mtext(xlab,side=1,padj=2.5,font=2,cex=R*2/3) |
|
|
1200 |
if(file.output) dev.off() |
|
|
1201 |
|
|
|
1202 |
if(file.output){ |
|
|
1203 |
if(file=="jpg") jpeg(paste("Multraits.Rectangular-Manhattan.",paste(taxa,collapse="."),".jpg",sep=""), width = 14*dpi,height=5*dpi,res=dpi,quality = 100) |
|
|
1204 |
if(file=="pdf") pdf(paste("Multraits.Rectangular-Manhattan.",paste(taxa,collapse="."),".pdf",sep=""), width = 15,height=6) |
|
|
1205 |
if(file=="tiff") tiff(paste("Multraits.Rectangular-Manhattan.",paste(taxa,collapse="."),".tiff",sep=""), width = 14*dpi,height=5*dpi,res=dpi) |
|
|
1206 |
par(mar = c(5,6,4,3),xaxs=xaxs,yaxs=yaxs,xpd=TRUE) |
|
|
1207 |
} |
|
|
1208 |
if(!file.output){ |
|
|
1209 |
if(is.null(dev.list())) dev.new(width = 15, height = 6) |
|
|
1210 |
par(xpd=TRUE) |
|
|
1211 |
} |
|
|
1212 |
|
|
|
1213 |
pvalue <- as.vector(Pmap[,3:(R+2)]) |
|
|
1214 |
if(is.null(ylim)){ |
|
|
1215 |
if(!is.null(threshold)){ |
|
|
1216 |
if(sum(threshold!=0)==length(threshold)){ |
|
|
1217 |
if(LOG10){ |
|
|
1218 |
Max=max(ceiling(-log10(min(pvalue[pvalue!=0]))),-log10(min(threshold))) |
|
|
1219 |
Min<-0 |
|
|
1220 |
}else{ |
|
|
1221 |
Max=max(ceiling(max(pvalue[pvalue!=Inf])),max(threshold)) |
|
|
1222 |
if(abs(Max)<=1) Max=max(max(pvalue[pvalue!=Inf]),max(threshold)) |
|
|
1223 |
Min <- min(floor(min(pvalue[pvalue!=Inf])),min(threshold)) |
|
|
1224 |
if(abs(Min)<=1) Min=min(min(pvalue[pvalue!=Inf]),min(threshold)) |
|
|
1225 |
} |
|
|
1226 |
}else{ |
|
|
1227 |
if(LOG10){ |
|
|
1228 |
Max=max(ceiling(-log10(min(pvalue[pvalue!=0])))) |
|
|
1229 |
Min=0 |
|
|
1230 |
}else{ |
|
|
1231 |
Max=max(ceiling(max(pvalue[pvalue!=Inf]))) |
|
|
1232 |
if(abs(Max)<=1) Max=max(max(pvalue[pvalue!=Inf])) |
|
|
1233 |
Min<- min(floor(min(pvalue[pvalue!=Inf]))) |
|
|
1234 |
if(abs(Min)<=1) Min=min(min(pvalue[pvalue!=Inf])) |
|
|
1235 |
# }else{ |
|
|
1236 |
# Max=max(ceiling(max(pvalue[pvalue!=Inf]))) |
|
|
1237 |
# } |
|
|
1238 |
} |
|
|
1239 |
} |
|
|
1240 |
}else{ |
|
|
1241 |
if(LOG10){ |
|
|
1242 |
Max=max(ceiling(-log10(min(pvalue[pvalue!=0])))) |
|
|
1243 |
Min=0 |
|
|
1244 |
}else{ |
|
|
1245 |
Max=max(ceiling(max(pvalue[pvalue!=Inf]))) |
|
|
1246 |
|
|
|
1247 |
#{ |
|
|
1248 |
if(abs(Max)<=1) Max=max(max(pvalue[pvalue!=Inf])) |
|
|
1249 |
Min<- min(floor(min(pvalue[pvalue!=Inf]))) |
|
|
1250 |
if(abs(Min)<=1) Min=min(min(pvalue[pvalue!=Inf])) |
|
|
1251 |
|
|
|
1252 |
# }else{ |
|
|
1253 |
# Max=max(ceiling(max(pvalue[pvalue!=Inf]))) |
|
|
1254 |
# } |
|
|
1255 |
} |
|
|
1256 |
} |
|
|
1257 |
if((Max-Min)<=1){ |
|
|
1258 |
if(cir.density){ |
|
|
1259 |
plot(NULL,xlim=c(0,1.01*max(pvalue.posN)),ylim=c(Min-(Max-Min)/den.fold, Max+10^(-ceiling(-log10(abs(Max))))),ylab=ylab, |
|
|
1260 |
cex.axis=cex.axis,cex.lab=2,font=2,axes=FALSE,xlab=xlab,main="") |
|
|
1261 |
}else{ |
|
|
1262 |
plot(NULL,xlim=c(0,max(pvalue.posN)),ylim=c(Min,Max+10^(-ceiling(-log10(abs(Max))))),ylab=ylab, |
|
|
1263 |
cex.axis=cex.axis,cex.lab=2,font=2,axes=FALSE,xlab=xlab,main="") |
|
|
1264 |
} |
|
|
1265 |
}else{ |
|
|
1266 |
if(cir.density){ |
|
|
1267 |
plot(NULL,xlim=c(0,1.01*max(pvalue.posN)),ylim=c(Min-(Max-Min)/den.fold,Max),ylab=ylab, |
|
|
1268 |
cex.axis=cex.axis,cex.lab=2,font=2,axes=FALSE,xlab=xlab,main="") |
|
|
1269 |
}else{ |
|
|
1270 |
plot(NULL,xlim=c(0,max(pvalue.posN)),ylim=c(Min,Max),ylab=ylab, |
|
|
1271 |
cex.axis=cex.axis,cex.lab=2,font=2,axes=FALSE,xlab=xlab,main="") |
|
|
1272 |
} |
|
|
1273 |
} |
|
|
1274 |
}else{ |
|
|
1275 |
Max <- max(ylim) |
|
|
1276 |
Min <- min(ylim) |
|
|
1277 |
if(cir.density){ |
|
|
1278 |
plot(NULL,xlim=c(0,1.01*max(pvalue.posN)),ylim=c(min(ylim)-Max/den.fold,Max),ylab=ylab, |
|
|
1279 |
cex.axis=cex.axis,cex.lab=2,font=2,axes=FALSE,xlab=xlab,main="Manhattan plot of") |
|
|
1280 |
}else{ |
|
|
1281 |
plot(NULL,xlim=c(0,max(pvalue.posN)),ylim=ylim,ylab=ylab, |
|
|
1282 |
cex.axis=cex.axis,cex.lab=2,font=2,axes=FALSE,xlab=xlab,main="Manhattan plot of") |
|
|
1283 |
} |
|
|
1284 |
} |
|
|
1285 |
Max1 <- Max |
|
|
1286 |
Min1 <- Min |
|
|
1287 |
if(abs(Max) <= 1) Max <- round(Max, ceiling(-log10(abs(Max)))) |
|
|
1288 |
if(abs(Min) <= 1) Min <- round(Min, ceiling(-log10(abs(Min)))) |
|
|
1289 |
legend("topleft",taxa,col=t(col)[1:R],pch=19,text.font=6,box.col=NA) |
|
|
1290 |
if(is.null(chr.labels)){ |
|
|
1291 |
axis(1, at=c(0,ticks),cex.axis=cex.axis,font=2,labels=c("Chr",chr.ori)) |
|
|
1292 |
}else{ |
|
|
1293 |
axis(1, at=c(0,ticks),cex.axis=cex.axis,font=2,labels=c("Chr",chr.labels)) |
|
|
1294 |
} |
|
|
1295 |
if(is.null(ylim)){ |
|
|
1296 |
if((Max-Min)>1){ |
|
|
1297 |
#print(seq(0,(Max+1),ceiling((Max+1)/10))) |
|
|
1298 |
axis(2,at=seq(Min,(Max),ceiling((Max-Min)/10)),cex.axis=cex.axis,font=2,labels=round(seq(Min,(Max),ceiling((Max-Min)/10)),2)) |
|
|
1299 |
legend.y <- tail(round(seq(0,(Max),ceiling((Max)/10)),2), 1) |
|
|
1300 |
}else{ |
|
|
1301 |
axis(2,at=seq(Min,Max+10^(-ceiling(-log10(abs(Max)))),10^(-ceiling(-log10(max(abs(c(Max, Min))))))),cex.axis=cex.axis,font=2,labels=seq(0,Max+10^(-ceiling(-log10(abs(Max)))),10^(-ceiling(-log10(max(abs(c(Max, Min)))))))) |
|
|
1302 |
legend.y <- tail(seq(0,Max+10^(-ceiling(-log10(abs(Max)))),10^(-ceiling(-log10(max(abs(c(Max, Min))))))), 1) |
|
|
1303 |
} |
|
|
1304 |
}else{ |
|
|
1305 |
if(ylim[2]>1){ |
|
|
1306 |
axis(2,at=seq(min(ylim),(ylim[2]),ceiling((ylim[2])/10)),cex.axis=cex.axis,font=2,labels=round(seq(min(ylim),(ylim[2]),ceiling((ylim[2])/10)),2)) |
|
|
1307 |
legend.y <- tail(ylim[2], 1) |
|
|
1308 |
}else{ |
|
|
1309 |
axis(2,at=seq(min(ylim),ylim[2],10^(-ceiling(-log10(max(abs(ylim)))))),cex.axis=cex.axis,font=2,labels=seq(min(ylim),ylim[2],10^(-ceiling(-log10(max(abs(ylim))))))) |
|
|
1310 |
legend.y <- tail(ylim[2], 1) |
|
|
1311 |
} |
|
|
1312 |
} |
|
|
1313 |
do <- TRUE |
|
|
1314 |
sam.index <- list() |
|
|
1315 |
for(l in 1:R){ |
|
|
1316 |
sam.index[[l]] <- 1:nrow(Pmap) |
|
|
1317 |
} |
|
|
1318 |
|
|
|
1319 |
#change the sample number according to Pmap |
|
|
1320 |
sam.num <- ceiling(nrow(Pmap)/30) |
|
|
1321 |
if(verbose) print("Multraits_Rectangular Plotting...") |
|
|
1322 |
while(do){ |
|
|
1323 |
for(i in 1:R){ |
|
|
1324 |
if(length(sam.index[[i]]) < sam.num){ |
|
|
1325 |
plot.index <- sam.index[[i]] |
|
|
1326 |
}else{ |
|
|
1327 |
plot.index <- sample(sam.index[[i]], sam.num, replace=FALSE) |
|
|
1328 |
} |
|
|
1329 |
sam.index[[i]] <- sam.index[[i]][-which(sam.index[[i]] %in% plot.index)] |
|
|
1330 |
logpvalue=logpvalueT[plot.index,i] |
|
|
1331 |
if(!is.null(ylim)){indexx <- logpvalue>=min(ylim)}else{indexx <- 1:length(logpvalue)} |
|
|
1332 |
points(pvalue.posN[plot.index][indexx],logpvalue[indexx],pch=pch,cex=cex[2],col=rgb(col2rgb(t(col)[i])[1], col2rgb(t(col)[i])[2], col2rgb(t(col)[i])[3], 100, maxColorValue=255)) |
|
|
1333 |
#if(!is.null(threshold) & (length(grep("FarmCPU",taxa[i])) != 0)) abline(v=which(pvalueT[,i] < min(threshold)/max(dim(Pmap))),col="grey",lty=2,lwd=signal.line) |
|
|
1334 |
} |
|
|
1335 |
if(length(sam.index[[i]]) == 0) do <- FALSE |
|
|
1336 |
} |
|
|
1337 |
|
|
|
1338 |
# for(i in 1:R){ |
|
|
1339 |
# logpvalue=logpvalueT[,i] |
|
|
1340 |
# points(pvalue.posN,logpvalue,pch=pch,cex=cex[2],col=t(col)[i]) |
|
|
1341 |
# } |
|
|
1342 |
|
|
|
1343 |
if(!is.null(threshold)){ |
|
|
1344 |
if(sum(threshold!=0)==length(threshold)){ |
|
|
1345 |
for(thr in 1:length(threshold)){ |
|
|
1346 |
h <- ifelse(LOG10, -log10(threshold[thr]), threshold[thr]) |
|
|
1347 |
par(xpd=FALSE); abline(h=h,col=threshold.col[thr],lwd=threshold.lwd[thr],lty=threshold.lty[thr]); par(xpd=TRUE) |
|
|
1348 |
} |
|
|
1349 |
} |
|
|
1350 |
} |
|
|
1351 |
if(is.null(ylim)){ymin <- Min1}else{ymin <- min(ylim)} |
|
|
1352 |
if(cir.density){ |
|
|
1353 |
for(yll in 1:length(pvalue.posN.list)){ |
|
|
1354 |
polygon(c(min(pvalue.posN.list[[yll]]), min(pvalue.posN.list[[yll]]), max(pvalue.posN.list[[yll]]), max(pvalue.posN.list[[yll]])), |
|
|
1355 |
c(ymin-0.5*(Max-Min)/den.fold, ymin-1.5*(Max-Min)/den.fold, |
|
|
1356 |
ymin-1.5*(Max-Min)/den.fold, ymin-0.5*(Max-Min)/den.fold), |
|
|
1357 |
col="grey", border="grey") |
|
|
1358 |
} |
|
|
1359 |
|
|
|
1360 |
segments( |
|
|
1361 |
pvalue.posN, |
|
|
1362 |
ymin-0.5*(Max-Min)/den.fold, |
|
|
1363 |
pvalue.posN, |
|
|
1364 |
ymin-1.5*(Max-Min)/den.fold, |
|
|
1365 |
col=density.list$den.col, lwd=0.1 |
|
|
1366 |
) |
|
|
1367 |
legend( |
|
|
1368 |
x=max(pvalue.posN)+band, |
|
|
1369 |
y=legend.y, |
|
|
1370 |
title="", legend=density.list$legend.y, pch=15, pt.cex = 2.5, col=density.list$legend.col, |
|
|
1371 |
cex=0.8, bty="n", |
|
|
1372 |
y.intersp=1, |
|
|
1373 |
x.intersp=1, |
|
|
1374 |
yjust=1, xjust=0, xpd=TRUE |
|
|
1375 |
) |
|
|
1376 |
|
|
|
1377 |
} |
|
|
1378 |
if(file.output) dev.off() |
|
|
1379 |
|
|
|
1380 |
} |
|
|
1381 |
} |
|
|
1382 |
|
|
|
1383 |
if("q" %in% plot.type){ |
|
|
1384 |
#print("Starting QQ-plot!",quote=F) |
|
|
1385 |
if(multracks){ |
|
|
1386 |
if(file.output){ |
|
|
1387 |
if(file=="jpg") jpeg(paste("Multracks.QQplot.",paste(taxa,collapse="."),".jpg",sep=""), width = R*2.5*dpi,height=5.5*dpi,res=dpi,quality = 100) |
|
|
1388 |
if(file=="pdf") pdf(paste("Multracks.QQplot.",paste(taxa,collapse="."),".pdf",sep=""), width = R*2.5,height=5.5) |
|
|
1389 |
if(file=="tiff") tiff(paste("Multracks.QQplot.",paste(taxa,collapse="."),".tiff",sep=""), width = R*2.5*dpi,height=5.5*dpi,res=dpi) |
|
|
1390 |
par(mfcol=c(1,R),mar = c(0,1,4,1.5),oma=c(3,5,0,0),xpd=TRUE) |
|
|
1391 |
}else{ |
|
|
1392 |
if(is.null(dev.list())) dev.new(width = 2.5*R, height = 5.5) |
|
|
1393 |
par(xpd=TRUE) |
|
|
1394 |
} |
|
|
1395 |
for(i in 1:R){ |
|
|
1396 |
if(verbose) print(paste("Multracks_QQ Plotting ",taxa[i],"...",sep="")) |
|
|
1397 |
P.values=as.numeric(Pmap[,i+2]) |
|
|
1398 |
P.values=P.values[!is.na(P.values)] |
|
|
1399 |
if(LOG10){ |
|
|
1400 |
P.values=P.values[P.values>0] |
|
|
1401 |
P.values=P.values[P.values<=1] |
|
|
1402 |
N=length(P.values) |
|
|
1403 |
P.values=P.values[order(P.values)] |
|
|
1404 |
}else{ |
|
|
1405 |
N=length(P.values) |
|
|
1406 |
P.values=P.values[order(P.values,decreasing=TRUE)] |
|
|
1407 |
} |
|
|
1408 |
p_value_quantiles=(1:length(P.values))/(length(P.values)+1) |
|
|
1409 |
log.Quantiles <- -log10(p_value_quantiles) |
|
|
1410 |
if(LOG10){ |
|
|
1411 |
log.P.values <- -log10(P.values) |
|
|
1412 |
}else{ |
|
|
1413 |
log.P.values <- P.values |
|
|
1414 |
} |
|
|
1415 |
|
|
|
1416 |
#calculate the confidence interval of QQ-plot |
|
|
1417 |
if(conf.int){ |
|
|
1418 |
N1=length(log.Quantiles) |
|
|
1419 |
c95 <- rep(NA,N1) |
|
|
1420 |
c05 <- rep(NA,N1) |
|
|
1421 |
for(j in 1:N1){ |
|
|
1422 |
xi=ceiling((10^-log.Quantiles[j])*N) |
|
|
1423 |
if(xi==0)xi=1 |
|
|
1424 |
c95[j] <- qbeta(0.95,xi,N-xi+1) |
|
|
1425 |
c05[j] <- qbeta(0.05,xi,N-xi+1) |
|
|
1426 |
} |
|
|
1427 |
index=length(c95):1 |
|
|
1428 |
}else{ |
|
|
1429 |
c05 <- 1 |
|
|
1430 |
c95 <- 1 |
|
|
1431 |
} |
|
|
1432 |
|
|
|
1433 |
YlimMax <- max(floor(max(max(-log10(c05)), max(-log10(c95)))+1), floor(max(log.P.values)+1)) |
|
|
1434 |
plot(NULL, xlim = c(0,floor(max(log.Quantiles)+1)), axes=FALSE, cex.axis=cex.axis, cex.lab=1.2,ylim=c(0,YlimMax),xlab ="", ylab="", main = taxa[i]) |
|
|
1435 |
axis(1, at=seq(0,floor(max(log.Quantiles)+1),ceiling((max(log.Quantiles)+1)/10)), labels=seq(0,floor(max(log.Quantiles)+1),ceiling((max(log.Quantiles)+1)/10)), cex.axis=cex.axis) |
|
|
1436 |
axis(2, at=seq(0,YlimMax,ceiling(YlimMax/10)), labels=seq(0,YlimMax,ceiling(YlimMax/10)), cex.axis=cex.axis) |
|
|
1437 |
|
|
|
1438 |
#plot the confidence interval of QQ-plot |
|
|
1439 |
if(conf.int) polygon(c(log.Quantiles[index],log.Quantiles),c(-log10(c05)[index],-log10(c95)),col=conf.int.col,border=conf.int.col) |
|
|
1440 |
|
|
|
1441 |
if(!is.null(threshold.col)){par(xpd=FALSE); abline(a = 0, b = 1, col = threshold.col[1],lwd=2); par(xpd=TRUE)} |
|
|
1442 |
points(log.Quantiles, log.P.values, col = col[1],pch=19,cex=cex[3]) |
|
|
1443 |
if(!is.null(threshold)){ |
|
|
1444 |
if(sum(threshold!=0)==length(threshold)){ |
|
|
1445 |
thre.line=-log10(min(threshold)) |
|
|
1446 |
if(amplify==TRUE){ |
|
|
1447 |
thre.index=which(log.P.values>=thre.line) |
|
|
1448 |
if(length(thre.index)!=0){ |
|
|
1449 |
|
|
|
1450 |
#cover the points that exceed the threshold with the color "white" |
|
|
1451 |
points(log.Quantiles[thre.index],log.P.values[thre.index], col = "white",pch=19,cex=cex[3]) |
|
|
1452 |
if(is.null(signal.col)){ |
|
|
1453 |
points(log.Quantiles[thre.index],log.P.values[thre.index],col = col[1],pch=signal.pch[1],cex=signal.cex[1]) |
|
|
1454 |
}else{ |
|
|
1455 |
points(log.Quantiles[thre.index],log.P.values[thre.index],col = signal.col[1],pch=signal.pch[1],cex=signal.cex[1]) |
|
|
1456 |
} |
|
|
1457 |
} |
|
|
1458 |
} |
|
|
1459 |
} |
|
|
1460 |
} |
|
|
1461 |
} |
|
|
1462 |
if(box) box() |
|
|
1463 |
if(file.output) dev.off() |
|
|
1464 |
if(R > 1){ |
|
|
1465 |
signal.col <- NULL |
|
|
1466 |
if(file.output){ |
|
|
1467 |
if(file=="jpg") jpeg(paste("Multraits.QQplot.",paste(taxa,collapse="."),".jpg",sep=""), width = 5.5*dpi,height=5.5*dpi,res=dpi,quality = 100) |
|
|
1468 |
if(file=="pdf") pdf(paste("Multraits.QQplot.",paste(taxa,collapse="."),".pdf",sep=""), width = 5.5,height=5.5) |
|
|
1469 |
if(file=="tiff") tiff(paste("Multraits.QQplot.",paste(taxa,collapse="."),".tiff",sep=""), width = 5.5*dpi,height=5.5*dpi,res=dpi) |
|
|
1470 |
par(mar = c(5,5,4,2),xpd=TRUE) |
|
|
1471 |
}else{ |
|
|
1472 |
dev.new(width = 5.5, height = 5.5) |
|
|
1473 |
par(xpd=TRUE) |
|
|
1474 |
} |
|
|
1475 |
p_value_quantiles=(1:nrow(Pmap))/(nrow(Pmap)+1) |
|
|
1476 |
log.Quantiles <- -log10(p_value_quantiles) |
|
|
1477 |
|
|
|
1478 |
# calculate the confidence interval of QQ-plot |
|
|
1479 |
if((i == 1) & conf.int){ |
|
|
1480 |
N1=length(log.Quantiles) |
|
|
1481 |
c95 <- rep(NA,N1) |
|
|
1482 |
c05 <- rep(NA,N1) |
|
|
1483 |
for(j in 1:N1){ |
|
|
1484 |
xi=ceiling((10^-log.Quantiles[j])*N) |
|
|
1485 |
if(xi==0)xi=1 |
|
|
1486 |
c95[j] <- qbeta(0.95,xi,N-xi+1) |
|
|
1487 |
c05[j] <- qbeta(0.05,xi,N-xi+1) |
|
|
1488 |
} |
|
|
1489 |
index=length(c95):1 |
|
|
1490 |
} |
|
|
1491 |
|
|
|
1492 |
if(!conf.int){c05 <- 1; c95 <- 1} |
|
|
1493 |
|
|
|
1494 |
Pmap.min <- Pmap[,3:(R+2)] |
|
|
1495 |
YlimMax <- max(floor(max(max(-log10(c05)), max(-log10(c95)))+1), -log10(min(Pmap.min[Pmap.min > 0]))) |
|
|
1496 |
plot(NULL, xlim = c(0,floor(max(log.Quantiles)+1)), axes=FALSE, cex.axis=cex.axis, cex.lab=1.2,ylim=c(0, floor(YlimMax+1)),xlab =expression(Expected~~-log[10](italic(p))), ylab = expression(Observed~~-log[10](italic(p))), main = "QQplot") |
|
|
1497 |
legend("topleft",taxa,col=t(col)[1:R],pch=19,text.font=6,box.col=NA) |
|
|
1498 |
axis(1, at=seq(0,floor(max(log.Quantiles)+1),ceiling((max(log.Quantiles)+1)/10)), labels=seq(0,floor(max(log.Quantiles)+1),ceiling((max(log.Quantiles)+1)/10)), cex.axis=cex.axis) |
|
|
1499 |
axis(2, at=seq(0,floor(YlimMax+1),ceiling((YlimMax+1)/10)), labels=seq(0,floor((YlimMax+1)),ceiling((YlimMax+1)/10)), cex.axis=cex.axis) |
|
|
1500 |
|
|
|
1501 |
# plot the confidence interval of QQ-plot |
|
|
1502 |
if(conf.int) polygon(c(log.Quantiles[index],log.Quantiles),c(-log10(c05)[index],-log10(c95)),col=conf.int.col,border=conf.int.col) |
|
|
1503 |
|
|
|
1504 |
for(i in 1:R){ |
|
|
1505 |
if(verbose) print(paste("Multraits_QQ Plotting ",taxa[i],"...",sep="")) |
|
|
1506 |
P.values=as.numeric(Pmap[,i+2]) |
|
|
1507 |
P.values=P.values[!is.na(P.values)] |
|
|
1508 |
if(LOG10){ |
|
|
1509 |
P.values=P.values[P.values>=0] |
|
|
1510 |
P.values=P.values[P.values<=1] |
|
|
1511 |
N=length(P.values) |
|
|
1512 |
P.values=P.values[order(P.values)] |
|
|
1513 |
}else{ |
|
|
1514 |
N=length(P.values) |
|
|
1515 |
P.values=P.values[order(P.values,decreasing=TRUE)] |
|
|
1516 |
} |
|
|
1517 |
if(LOG10){ |
|
|
1518 |
log.P.values <- -log10(P.values) |
|
|
1519 |
}else{ |
|
|
1520 |
log.P.values <- P.values |
|
|
1521 |
} |
|
|
1522 |
|
|
|
1523 |
|
|
|
1524 |
if((i == 1) & !is.null(threshold.col)){par(xpd=FALSE); abline(a = 0, b = 1, col = threshold.col[1],lwd=2); par(xpd=TRUE)} |
|
|
1525 |
points(log.Quantiles, log.P.values, col = t(col)[i],pch=19,cex=cex[3]) |
|
|
1526 |
|
|
|
1527 |
if(!is.null(threshold)){ |
|
|
1528 |
if(sum(threshold!=0)==length(threshold)){ |
|
|
1529 |
thre.line=-log10(min(threshold)) |
|
|
1530 |
if(amplify==TRUE){ |
|
|
1531 |
thre.index=which(log.P.values>=thre.line) |
|
|
1532 |
if(length(thre.index)!=0){ |
|
|
1533 |
|
|
|
1534 |
# cover the points that exceed the threshold with the color "white" |
|
|
1535 |
points(log.Quantiles[thre.index],log.P.values[thre.index], col = "white",pch=19,cex=cex[3]) |
|
|
1536 |
if(is.null(signal.col)){ |
|
|
1537 |
points(log.Quantiles[thre.index],log.P.values[thre.index],col = t(col)[i],pch=signal.pch[1],cex=signal.cex[1]) |
|
|
1538 |
}else{ |
|
|
1539 |
points(log.Quantiles[thre.index],log.P.values[thre.index],col = signal.col[1],pch=signal.pch[1],cex=signal.cex[1]) |
|
|
1540 |
} |
|
|
1541 |
} |
|
|
1542 |
} |
|
|
1543 |
} |
|
|
1544 |
} |
|
|
1545 |
} |
|
|
1546 |
if(box) box() |
|
|
1547 |
if(file.output) dev.off() |
|
|
1548 |
} |
|
|
1549 |
}else{ |
|
|
1550 |
for(i in 1:R){ |
|
|
1551 |
if(verbose) print(paste("Q_Q Plotting ",taxa[i],"...",sep="")) |
|
|
1552 |
if(file.output){ |
|
|
1553 |
if(file=="jpg") jpeg(paste("QQplot.",taxa[i],".jpg",sep=""), width = 5.5*dpi,height=5.5*dpi,res=dpi,quality = 100) |
|
|
1554 |
if(file=="pdf") pdf(paste("QQplot.",taxa[i],".pdf",sep=""), width = 5.5,height=5.5) |
|
|
1555 |
if(file=="tiff") tiff(paste("QQplot.",taxa[i],".tiff",sep=""), width = 5.5*dpi,height=5.5*dpi,res=dpi) |
|
|
1556 |
par(mar = c(5,5,4,2),xpd=TRUE) |
|
|
1557 |
}else{ |
|
|
1558 |
if(is.null(dev.list())) dev.new(width = 5.5, height = 5.5) |
|
|
1559 |
par(xpd=TRUE) |
|
|
1560 |
} |
|
|
1561 |
P.values=as.numeric(Pmap[,i+2]) |
|
|
1562 |
P.values=P.values[!is.na(P.values)] |
|
|
1563 |
if(LOG10){ |
|
|
1564 |
P.values=P.values[P.values>0] |
|
|
1565 |
P.values=P.values[P.values<=1] |
|
|
1566 |
N=length(P.values) |
|
|
1567 |
P.values=P.values[order(P.values)] |
|
|
1568 |
}else{ |
|
|
1569 |
N=length(P.values) |
|
|
1570 |
P.values=P.values[order(P.values,decreasing=TRUE)] |
|
|
1571 |
} |
|
|
1572 |
p_value_quantiles=(1:length(P.values))/(length(P.values)+1) |
|
|
1573 |
log.Quantiles <- -log10(p_value_quantiles) |
|
|
1574 |
if(LOG10){ |
|
|
1575 |
log.P.values <- -log10(P.values) |
|
|
1576 |
}else{ |
|
|
1577 |
log.P.values <- P.values |
|
|
1578 |
} |
|
|
1579 |
|
|
|
1580 |
#calculate the confidence interval of QQ-plot |
|
|
1581 |
if(conf.int){ |
|
|
1582 |
N1=length(log.Quantiles) |
|
|
1583 |
c95 <- rep(NA,N1) |
|
|
1584 |
c05 <- rep(NA,N1) |
|
|
1585 |
for(j in 1:N1){ |
|
|
1586 |
xi=ceiling((10^-log.Quantiles[j])*N) |
|
|
1587 |
if(xi==0)xi=1 |
|
|
1588 |
c95[j] <- qbeta(0.95,xi,N-xi+1) |
|
|
1589 |
c05[j] <- qbeta(0.05,xi,N-xi+1) |
|
|
1590 |
} |
|
|
1591 |
index=length(c95):1 |
|
|
1592 |
}else{ |
|
|
1593 |
c05 <- 1 |
|
|
1594 |
c95 <- 1 |
|
|
1595 |
} |
|
|
1596 |
YlimMax <- max(floor(max(max(-log10(c05)), max(-log10(c95)))+1), floor(max(log.P.values)+1)) |
|
|
1597 |
plot(NULL, xlim = c(0,floor(max(log.Quantiles)+1)), axes=FALSE, cex.axis=cex.axis, cex.lab=1.2,ylim=c(0,YlimMax),xlab =expression(Expected~~-log[10](italic(p))), ylab = expression(Observed~~-log[10](italic(p))), main = paste("QQplot of",taxa[i])) |
|
|
1598 |
axis(1, at=seq(0,floor(max(log.Quantiles)+1),ceiling((max(log.Quantiles)+1)/10)), labels=seq(0,floor(max(log.Quantiles)+1),ceiling((max(log.Quantiles)+1)/10)), cex.axis=cex.axis) |
|
|
1599 |
axis(2, at=seq(0,YlimMax,ceiling(YlimMax/10)), labels=seq(0,YlimMax,ceiling(YlimMax/10)), cex.axis=cex.axis) |
|
|
1600 |
|
|
|
1601 |
#plot the confidence interval of QQ-plot |
|
|
1602 |
if(conf.int) polygon(c(log.Quantiles[index],log.Quantiles),c(-log10(c05)[index],-log10(c95)),col=conf.int.col,border=conf.int.col) |
|
|
1603 |
|
|
|
1604 |
if(!is.null(threshold.col)){par(xpd=FALSE); abline(a = 0, b = 1, col = threshold.col[1],lwd=2); par(xpd=TRUE)} |
|
|
1605 |
points(log.Quantiles, log.P.values, col = col[1],pch=19,cex=cex[3]) |
|
|
1606 |
|
|
|
1607 |
if(!is.null(threshold)){ |
|
|
1608 |
if(sum(threshold!=0)==length(threshold)){ |
|
|
1609 |
thre.line=-log10(min(threshold)) |
|
|
1610 |
if(amplify==TRUE){ |
|
|
1611 |
thre.index=which(log.P.values>=thre.line) |
|
|
1612 |
if(length(thre.index)!=0){ |
|
|
1613 |
|
|
|
1614 |
#cover the points that exceed the threshold with the color "white" |
|
|
1615 |
points(log.Quantiles[thre.index],log.P.values[thre.index], col = "white",pch=19,cex=cex[3]) |
|
|
1616 |
if(is.null(signal.col)){ |
|
|
1617 |
points(log.Quantiles[thre.index],log.P.values[thre.index],col = col[1],pch=signal.pch[1],cex=signal.cex[1]) |
|
|
1618 |
}else{ |
|
|
1619 |
points(log.Quantiles[thre.index],log.P.values[thre.index],col = signal.col[1],pch=signal.pch[1],cex=signal.cex[1]) |
|
|
1620 |
} |
|
|
1621 |
} |
|
|
1622 |
} |
|
|
1623 |
} |
|
|
1624 |
} |
|
|
1625 |
if(box) box() |
|
|
1626 |
if(file.output) dev.off() |
|
|
1627 |
} |
|
|
1628 |
} |
|
|
1629 |
} |
|
|
1630 |
if(file.output & verbose) print(paste("Plots are stored in: ", getwd(), sep="")) |
|
|
1631 |
} |