[a43cea]: / modas / regiongwas.py

Download this file

359 lines (331 with data), 17.7 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
import pandas as pd
import numpy as np
import modas.multiprocess as mp
import modas.gwas_cmd as gc
from sklearn.decomposition import PCA
from rpy2.robjects import pandas2ri
from rpy2.rinterface_lib.embedded import RRuntimeError
import rpy2.robjects as robjects
from rpy2.robjects.packages import importr
from rpy2.rinterface_lib.callbacks import logger as rpy2_logger
import subprocess
import logging
import glob, os
import shutil
import re
pandas2ri.activate()
rpy2_logger.setLevel(logging.ERROR)
rMVP = importr('rMVP')
base = importr('base')
bigmemory = importr('bigmemory')
utils_path = subprocess.check_output('locate modas/utils', shell=True, text=True, encoding='utf-8')
#utils_path = '/'.join(re.search('\n(.*site-packages.*)\n', utils_path).group(1).split('/')[:-1])
utils_path = re.search('\n(.*site-packages.*)\n', utils_path).group(1)
if not utils_path.endswith('utils'):
utils_path = '/'.join(utils_path.split('/')[:-1])
def region_gwas_parallel(bed_dir, threads, geno, gwas_model):
region_gwas_args = list()
geno_prefix = geno.split('/')[-1]
if gwas_model == 'GLM' or gwas_model == 'MLM':
fam = pd.read_csv(geno+'.fam', sep=r'\s+', header=None)
fam[5] = 1
fam.to_csv(geno_prefix+'.link.fam', sep='\t', na_rep='NA', header=None, index=False)
if os.path.exists(geno_prefix+'.link.bed'):
os.remove(geno_prefix+'.link.bed')
if os.path.exists(geno_prefix+'.link.bim'):
os.remove(geno_prefix+'.link.bim')
os.symlink(geno+'.bed', geno_prefix+'.link.bed')
os.symlink(geno+'.bim', geno_prefix+'.link.bim')
if gwas_model=='MLM':
related_matrix_cmd = utils_path + '/gemma -bfile {0}.link -gk 1 -o {1}'.format(geno_prefix,geno_prefix)
s = mp.run(related_matrix_cmd)
if s!=0:
return None
# if gwas_model=='MLM':
# gemma_cmd = 'gemma.linux -bfile {0} -k ./output/{1}.cXX.txt -lmm -n 1 -o {2}'
# elif gwas_model=='LM':
# gemma_cmd = 'gemma.linux -bfile {0} -lm -o {1}'
for _, i in enumerate(glob.glob(bed_dir+'/*.bed')):
i = i.replace('.bed','')
i = i.replace('m/z','m.z')
prefix = i.split('/')[-1]
if gwas_model == 'MLM':
region_gwas_args.append((gc.gemma_cmd('MLM', i, geno_prefix, 1, prefix + '_plink'),))
# region_gwas_args.append((gemma_cmd.format(i, geno_prefix, prefix+'_plink'),))
elif gwas_model == 'LM':
region_gwas_args.append((gc.gemma_cmd('LM', i, None, None, prefix + '_plink'),))
# region_gwas_args.append((gemma_cmd.format(i, prefix+'_plink'),))
else:
phe = pd.read_csv(i+'.fam', sep='\s+',header=None)
phe = phe.iloc[:, [0, -1]]
phe.columns = ['Taxa', prefix]
# region_gwas_args.append((phe, '../'+geno_prefix + '.link', '../'+i, 1))
region_gwas_args.append(('GLM', geno_prefix+'.link', i, phe, 1, './output'))
if gwas_model == 'LM' or gwas_model == 'MLM':
s = mp.parallel(mp.run, region_gwas_args, threads)
else:
if not os.path.exists('./output'):
os.mkdir('./output')
# os.chdir('./output')
# s = mp.parallel(glm_gwas, (region_gwas_args[0],), 1)
# s = mp.parallel(glm_gwas, region_gwas_args[1:], threads)
# os.chdir('../')
s = mp.parallel(gc.rmvp, (region_gwas_args[0],), 1)
s = mp.parallel(gc.rmvp, region_gwas_args[1:], threads)
if gwas_model == 'GLM' or gwas_model == 'MLM':
os.remove(geno_prefix+'.link.bed')
os.remove(geno_prefix+'.link.bim')
os.remove(geno_prefix+'.link.fam')
return s
def glm_gwas(omics_phe, pc_geno_prefix, geno_prefix, threads):
try:
base.sink('/dev/null')
if not os.path.exists(pc_geno_prefix + '.pc.desc'):
rMVP.MVP_Data(fileBed=pc_geno_prefix, fileKin=False, filePC=False, out=pc_geno_prefix,
verbose=False)
rMVP.MVP_Data_PC(True, mvp_prefix=pc_geno_prefix, pcs_keep=3, verbose=False)
rMVP.MVP_Data(fileBed=geno_prefix, fileKin=False, filePC=False, out=geno_prefix, verbose=False)
geno = bigmemory.attach_big_matrix(geno_prefix +'.geno.desc')
map_file = pd.read_csv(geno_prefix +'.geno.map', sep='\t')
Covariates_PC = bigmemory.as_matrix(bigmemory.attach_big_matrix(pc_geno_prefix + '.pc.desc'))
# base.setwd('./output')
rMVP.MVP(phe=omics_phe, geno=geno, map=map_file, CV_GLM=Covariates_PC, priority="speed",
ncpus=threads, maxLoop=10, threshold=0.05, method=['GLM'], file_output=True, verbose=False)
base.sink()
#gwas(omics_phe, pc_geno_prefix, geno_prefix, threads)
except RRuntimeError:
return 0
except ValueError:
return 0
else:
return 1
def generate_qtl_batch(omics_phe,phe_sig_qtl,geno_name,threads,bed_dir,rs_dir):
plink_extract = utils_path + '/plink -bfile {} --extract {} --make-bed -out {}'
bim = pd.read_csv(geno_name+'.bim', sep='\t', header=None)
qtl_batch = list()
rs = dict()
for index,row in phe_sig_qtl.iterrows():
rs.setdefault(row['phe_name'],[]).extend(bim.loc[(bim[0]==row['chr']) & (bim[3]>=row['start']) & (bim[3]<=row['end']),1].values.tolist())
for phe_name in rs:
out_name = bed_dir.strip('/') + '/' + '_'.join(['tmp',phe_name])
rs_name = rs_dir.strip('/') + '/' + '_'.join(['tmp',phe_name,'rs.txt'])
pd.Series(rs[phe_name]).to_frame().to_csv(rs_name,index=False,header=False)
qtl_batch.append((plink_extract.format(geno_name,rs_name,out_name),))
mp.parallel(mp.run,qtl_batch,threads)
for fn in glob.glob(bed_dir.strip('/')+'/*fam'):
fam = pd.read_csv(fn,sep=' ',header=None)
phe_name = '_'.join(fn.split('/')[-1].split('_')[1:]).replace('m.z','m/z').replace('.fam','')
fam.loc[:,5] = omics_phe.loc[:,phe_name].reindex(fam.loc[:,0]).values
fam.to_csv(fn,index=False,header=None,sep=' ',na_rep='NA')
# def generate_clump_input(dir,num_threads):
# if os.path.exists('./clump_input'):
# shutil.rmtree('./clump_input')
# os.mkdir('./clump_input')
# cmd = '''awk '{if(NR==1)print "SNP\\tP"; else print $2"\\t"$11}' '''
# cmds = list()
# fns = list()
# for fn in glob.glob(dir.strip('/')+'/*_plink.assoc.txt'):
# filename = fn.split('/')[-1]
# cmds.append((cmd+'{0} > ./clump_input/{1}'.format(fn, filename.replace('_plink.assoc.txt', '.assoc')),))
# fns.append(filename)
# s = mp.parallel(mp.run, cmds, num_threads)
# if sum(s) != 0:
# print(','.join(list(np.array(fns)[s]))+' do not successfully generated clump input file.')
# return s
def generate_clump_input(dir, gwas_model):
if os.path.exists('./clump_input'):
shutil.rmtree('./clump_input')
os.mkdir('./clump_input')
if gwas_model == 'LM' or gwas_model == 'MLM':
for fn in glob.glob(dir.strip('/')+'/*_plink.assoc.txt'):
filename = fn.split('/')[-1]
assoc = pd.read_csv(fn, sep='\t')
assoc = assoc[['rs', 'p_wald']]
assoc.columns = ['SNP', 'P']
assoc.to_csv('./clump_input/' + filename.replace('_plink.assoc.txt', '.assoc'), index=False, sep='\t')
else:
for fn in glob.glob(dir.strip('/')+'/tmp_*GLM.csv'):
filename = fn.split('/')[-1]
assoc = pd.read_csv(fn)
assoc = assoc.iloc[:, [0, -1]]
assoc.columns = ['SNP', 'P']
assoc.to_csv('./clump_input/' + filename.replace('.GLM.csv', '.assoc'), index=False, sep='\t')
def plink_clump(geno_path, p1, p2, num_threads):
if os.path.exists('./clump_result'):
shutil.rmtree('./clump_result')
os.mkdir('./clump_result')
cmd = utils_path + '/plink --bfile {0} --clump {1} --clump-p1 {2} --clump-p2 {3} --clump-kb {4} --clump-r2 0.2 --out {5}'
cmds = list()
ms = list()
for fn in glob.glob('./clump_input/*'):
phe_name = fn.split('/')[-1].replace('.assoc','')
cmds.append((cmd.format(geno_path+'/'+phe_name, fn, p1, p2,str(500), './clump_result/' + phe_name + '_'+str(500)),))
ms.append(phe_name)
s = mp.parallel(mp.run, cmds, num_threads)
if sum(s) != 0:
print(','.join(list(np.array(ms)[s]))+' do not successfully generated clumped file.')
return s
#def merge_qtl(qtl):
# qtl = qtl.sort_values(by=['CHR','BP'])
# merged_qtl = list()
# for index,row in qtl.iterrows():
# if not merged_qtl:
# merged_qtl.append(row)
# else:
# if row['CHR'] != merged_qtl[-1]['CHR']:
# merged_qtl.append(row)
# else:
# if row['BP'] - merged_qtl[-1]['BP'] <= 1000000:
# if row['P'] < merged_qtl[-1]['P']:
# merged_qtl[-1]['P'] = row['P']
# merged_qtl[-1]['BP'] = row['BP']
# merged_qtl[-1]['SNP'] = row['SNP']
# merged_qtl[-1]['SP2_num'] += row['SP2_num']
# merged_qtl[-1]['SP2']+= ',' + row['SP2']
# else:
# merged_qtl.append(row)
# merged_qtl = pd.DataFrame(merged_qtl)
# return merged_qtl
def merge_qtl_phe(qtl):
qtl = qtl.sort_values(by=['CHR','qtl_start'])
merged_phe_qtl = list()
for index,row in qtl.iterrows():
if not merged_phe_qtl:
merged_phe_qtl.append(row)
else:
if row['CHR'] != merged_phe_qtl[-1]['CHR']:
merged_phe_qtl.append(row)
else:
if row['qtl_start'] < merged_phe_qtl[-1]['qtl_end'] + 3000000:
if row['P'] < merged_phe_qtl[-1]['P']:
merged_phe_qtl[-1]['P'] = row['P']
merged_phe_qtl[-1]['SNP'] = row['SNP']
merged_phe_qtl[-1]['qtl_start'] = min(merged_phe_qtl[-1]['qtl_start'],row['qtl_start'])
merged_phe_qtl[-1]['qtl_end'] = max(merged_phe_qtl[-1]['qtl_end'], row['qtl_end'])
merged_phe_qtl[-1]['SP2_num'] += row['SP2_num']
else:
merged_phe_qtl.append(row)
merged_phe_qtl = pd.DataFrame(merged_phe_qtl)
return merged_phe_qtl
def merge_qtl(qtl):
qtl = qtl.sort_values(by=['CHR','qtl_start'])
merged_qtl = pd.DataFrame()
for index,row in qtl.iterrows():
if merged_qtl.empty:
merged_qtl = pd.concat([merged_qtl, row.to_frame().T])
else:
qtl_length = row['qtl_end'] - row['qtl_start']
qtl_ratio = (merged_qtl['qtl_end'] - row['qtl_start']) / qtl_length
qtl_index = (merged_qtl['CHR'] == row['CHR']) & (qtl_ratio >=0.1)
if qtl_index.sum()>0:
peak_dis = (merged_qtl.loc[qtl_index,'SNP'].apply(lambda x: int(x.split('_')[-1])) - int(row['SNP'].split('_')[-1])).abs()
if (peak_dis <= 2000000).sum()==0:
merged_qtl = pd.concat([merged_qtl, row.to_frame().T])
else:
merged_qtl_index = peak_dis[qtl_index].idxmin()
if merged_qtl.loc[merged_qtl_index,'P'] > row['P']:
merged_qtl.loc[merged_qtl_index,'P'] = row['P']
merged_qtl.loc[merged_qtl_index,'SNP'] = row['SNP']
merged_qtl.loc[merged_qtl_index,'qtl_start'] = min(merged_qtl.loc[merged_qtl_index,'qtl_start'],row['qtl_start'])
merged_qtl.loc[merged_qtl_index,'qtl_end'] = max(merged_qtl.loc[merged_qtl_index,'qtl_end'], row['qtl_end'])
merged_qtl.loc[merged_qtl_index,'SP2_num'] += row['SP2_num']
merged_qtl.loc[merged_qtl_index,'phe_name'] = merged_qtl.loc[merged_qtl_index,'phe_name'] + ',' + row['phe_name']
else:
merged_qtl = pd.concat([merged_qtl, row.to_frame().T])
return merged_qtl
def phe_cluster(phe, phe_labeled, n):
pca = PCA(n_components=1)
phe_pc1 = pca.fit_transform(phe)
phe_corr = phe.corrwith(pd.Series(phe_pc1[:,0],index=phe.index)).abs()
if (phe_corr >= 0.6).all():
phe_labeled.loc[phe_corr.index,'label'] = n
return pd.DataFrame(phe_pc1,index=phe.index,columns=['cluster'+str(n)+'_PC1']), phe_labeled, n+1
else:
phe_pc1= pd.DataFrame()
while not phe.empty:
phe_corr = phe.corrwith(pd.Series(pca.fit_transform(phe)[:,0],index=phe.index)).abs()
if (phe_corr < 0.6).sum()==1:
if phe_corr.shape[0]==2:
phe_pc1 = pd.concat([phe_pc1,phe.loc[:,phe_corr.index]],axis=1)
else:
phe_pc1 = pd.concat([phe_pc1,pd.DataFrame(pca.fit_transform(phe.loc[:,phe_corr>=0.6]),index=phe.index,columns=['cluster'+str(n)+'_PC1'])],axis=1)
phe_labeled.loc[phe.loc[:,phe_corr>=0.6].columns,'label'] = n
n = n + 1
phe_pc1 = pd.concat([phe_pc1,phe.loc[:, phe_corr < 0.6]],axis=1)
phe = pd.DataFrame()
else:
if (phe_corr>=0.6).any():
if (phe_corr>=0.6).sum()==1:
phe_pc1 = pd.concat([phe_pc1,phe.loc[:,phe_corr>=0.6]],axis=1)
else:
phe_pc1 = pd.concat([phe_pc1,pd.DataFrame(pca.fit_transform(phe.loc[:,phe_corr>=0.6]),index=phe.index,columns=['cluster'+str(n)+'_PC1'])],axis=1)
phe_labeled.loc[phe.loc[:,phe_corr>=0.6].columns,'label'] = n
n = n + 1
phe = phe.loc[:,phe_corr < 0.6]
else:
phe_pc1 = pd.concat([phe_pc1,phe],axis=1)
phe= pd.DataFrame()
#phe_corr = phe.corrwith(pd.Series(pca.fit_transform(phe)[:,0],index=phe.index)).abs()
return phe_pc1,phe_labeled,n
def generate_qtl(clump_result_dir, p2):
qtl_res = list()
bad_qtl = list()
for fn in glob.glob(clump_result_dir.strip('/')+'/*clumped'):
phe_name = '_'.join(fn.split('/')[-1].split('_')[1:-1])
clump_result = pd.read_csv(fn,sep='\s+')
clump_result = clump_result.loc[clump_result.SP2!='NONE',:]
qtl = clump_result[['CHR','BP','SNP','P','SP2']]
qtl.loc[:,'SP2_num'] = qtl['SP2'].apply(lambda x: len(x.split(',')))
qtl.loc[:,'log10P'] = -np.log10(qtl['P'])
if (qtl['SP2_num'] >= 10).sum() > 0:
qtl['qtl_start'] = qtl['SP2'].apply(lambda x:int(re.findall(r'_(\d+)',x)[0]))
qtl['qtl_end'] = qtl['SP2'].apply(lambda x:int(re.findall(r'_(\d+)',x)[-1]))
qtl['phe_name'] = phe_name
qtl_filter = qtl.loc[qtl.SP2_num>=5,:]
mer_qtl_filter = merge_qtl_phe(qtl_filter)
mer_qtl_filter.loc[:,'qtl_length'] = mer_qtl_filter['qtl_end'] - mer_qtl_filter['qtl_start'] + 1
if mer_qtl_filter.shape[0] < 10:
qtl = qtl.loc[(qtl.SP2_num>=5) & (qtl.log10P >= -np.log10(p2)), ['CHR','qtl_start','qtl_end','SNP','P','SP2_num','phe_name']]
mer_qtl = merge_qtl_phe(qtl)
mer_qtl.loc[:,'qtl_length'] = mer_qtl['qtl_end'] - mer_qtl['qtl_start'] + 1
mer_qtl = mer_qtl.loc[:,['CHR','qtl_start','qtl_end','SNP','P','SP2_num','qtl_length','phe_name']]
if mer_qtl.shape[0] < 4:
qtl_res.append(mer_qtl)
else:
bad_qtl.append(mer_qtl.loc[mer_qtl['SP2_num']>=10,:])
else:
bad_qtl.append(mer_qtl_filter.loc[mer_qtl_filter['SP2_num']>=10,['CHR','qtl_start','qtl_end','SNP','P','SP2_num','qtl_length','phe_name']])
qtl_res = pd.concat(qtl_res)
qtl_res = qtl_res.loc[qtl_res['SP2_num']>=10,:]
if not bad_qtl:
bad_qtl = pd.DataFrame()
else:
bad_qtl = pd.concat(bad_qtl)
return qtl_res, bad_qtl
def phe_PCA(omics_phe, qtl):
omics_phe = omics_phe.fillna(omics_phe.mean())
qtl_uniq = pd.DataFrame()
for phe_name in qtl['phe_name'].unique():
qtl_sub = qtl.loc[qtl.phe_name==phe_name,:]
if qtl_sub.shape[0]==1:
qtl_uniq = pd.concat([qtl_uniq,qtl_sub])
else:
qtl_sub = qtl_sub.sort_values(by=['SP2_num'],ascending=False)
if qtl_sub.iloc[0,:]['SP2_num'] / qtl_sub.iloc[1,:]['SP2_num'] > 2:
qtl_uniq = pd.concat([qtl_uniq,qtl_sub.iloc[0,:].to_frame().T])
else:
qtl_uniq = pd.concat([qtl_uniq,qtl_sub.loc[qtl_sub['P'].idxmin(),:].to_frame().T])
merged_qtl_uniq = merge_qtl(qtl_uniq)
merged_qtl_uniq.loc[:,'phe_name_num'] = merged_qtl_uniq['phe_name'].apply(lambda x:len(x.split(',')))
merged_qtl_uniq = merged_qtl_uniq.sort_values(by='phe_name_num',ascending=False)
omics_sig_phe = omics_phe.loc[:,[p.replace('m.z','m/z') for p in qtl['phe_name'].unique()]]
omics_sig_phe_labeled = omics_sig_phe.T
omics_sig_phe_labeled.loc[:,'label'] = 0
omics_phe_pc = pd.DataFrame()
n=1
for phe_name in merged_qtl_uniq.loc[merged_qtl_uniq['phe_name_num']>=2,'phe_name']:
omics_phe_sub = omics_sig_phe.loc[:,[p.replace('m.z','m/z') for p in phe_name.split(',')]]
omics_phe_sub_pc,omics_sig_phe_labeled,n = phe_cluster(omics_phe_sub, omics_sig_phe_labeled, n)
omics_phe_pc = pd.concat([omics_phe_pc, omics_phe_sub_pc],axis=1)
clustered_omics_phe = pd.merge(omics_phe_pc.loc[:,~omics_phe_pc.columns.isin(omics_sig_phe.columns)],omics_sig_phe_labeled.loc[omics_sig_phe_labeled.label==0,:].drop('label',axis=1).T,left_index=True,right_index=True)
return clustered_omics_phe, omics_sig_phe_labeled