[a43cea]: / modas / prescreen.py

Download this file

200 lines (182 with data), 10.3 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import pandas as pd
import numpy as np
import modas.multiprocess as mp
from sklearn.preprocessing import MinMaxScaler
import os, glob
import logging, re
from rpy2.robjects import pandas2ri
from rpy2.rinterface_lib.embedded import RRuntimeError
import rpy2.robjects as robjects
from rpy2.robjects.packages import importr
from rpy2.rinterface_lib.callbacks import logger as rpy2_logger
import subprocess
pandas2ri.activate()
rpy2_logger.setLevel(logging.ERROR)
base = importr('base')
utils = importr('utils')
utils_path = subprocess.check_output('locate modas/utils', shell=True, text=True, encoding='utf-8')
#utils_path = '/'.join(re.search('\n(.*site-packages.*)\n', utils_path).group(1).split('/')[:-1])
utils_path = re.search('\n(.*site-packages.*)\n', utils_path).group(1)
if not utils_path.endswith('utils'):
utils_path = '/'.join(utils_path.split('/')[:-1])
if not base.require('rMVP')[0]:
utils.install_packages(np.array(['data.table', 'ggplot2', 'ggsignif', 'bigmemory', 'RcppProgress', 'BH']), repos='https://cloud.r-project.org', quiet=True)
utils.install_packages(utils_path + '/rMVP_1.0.6_modify.tar.gz', repos=robjects.rinterface.NULL, type='source', quiet=True)
# utils.install_packages('bigsnpr', dependence=True, repos='https://cloud.r-project.org', quiet=True)
rMVP = importr('rMVP')
bigmemory = importr('bigmemory')
def qtl_pc2bimbam(qtl_pc):
#qtl_pc.loc[:,:] = np.around(MinMaxScaler(feature_range=(0, 2)).fit_transform(qtl_pc.values),decimals=3)
g = qtl_pc.T.reset_index()
g.insert(1,'minor',['A']*g.shape[0])
g.insert(2,'major',['T']*g.shape[0])
a = g.iloc[:,0].to_frame()
a['pos'] = a.iloc[:,0].apply(lambda x: str((int(x.split('_')[2])+int(x.split('_')[3]))/2))
a['chr'] = a.iloc[:,0].apply(lambda x: x.split('_')[1])
return a,g
def qtl_pc_gwas_parallel(omics_phe, bimbam_dir, threads, geno, geno_prefix, gwas_model):
qtl_pc_gwas_args = list()
if gwas_model == 'MLM' or gwas_model == 'GLM':
fam = pd.read_csv(geno + '.fam', sep=r'\s+', header=None)
fam[5] = 1
fam.to_csv(geno_prefix + '.link.fam', sep='\t', na_rep='NA', header=None, index=False)
#omics_phe = omics_phe.reindex(fam[0].values)
if os.path.exists(geno_prefix + '.link.bed'):
os.remove(geno_prefix + '.link.bed')
if os.path.exists(geno_prefix + '.link.bim'):
os.remove(geno_prefix + '.link.bim')
os.symlink(geno + '.bed', geno_prefix + '.link.bed')
os.symlink(geno + '.bim', geno_prefix + '.link.bim')
if gwas_model == 'MLM':
related_matrix_cmd = utils_path + '/gemma -bfile {0}.link -gk 1 -o {1}'.format(geno_prefix,geno_prefix)
s = mp.run(related_matrix_cmd)
if s!=0:
return None
if gwas_model == 'MLM':
gemma_cmd = utils_path + '/gemma -g {0} -a {1} -p {2} -k ./output/{3}.cXX.txt -lmm -n 1 -o {4}'
elif gwas_model == 'LM':
gemma_cmd = utils_path + '/gemma -g {0} -a {1} -p {2} -lm -o {3}'
else:
g = pd.read_csv(bimbam_dir.strip('/')+'/'+geno_prefix+'_qtl_pc.geno.txt',header=None)
a = pd.read_csv(bimbam_dir.strip('/')+'/'+geno_prefix+'_qtl_pc.anno.txt',header=None)
g.iloc[:,3:].to_csv(geno_prefix+'.numeric.txt',index=False, header=None, sep='\t')
a.columns = ['SNP', 'Pos', 'Chr']
a = a[['SNP', 'Chr', 'Pos']]
a.to_csv(geno_prefix+'.map.txt', index=False, sep='\t')
for m in omics_phe.columns:
phe = omics_phe[m].to_frame()
m = m.replace('m/z', 'm.z')
phe.to_csv(bimbam_dir.strip('/') + '/' + m + '_phe.txt', index=False, header=None, na_rep='NA')
if gwas_model == 'MLM':
qtl_pc_gwas_args.append((gemma_cmd.format(bimbam_dir.strip('/') + '/'+geno_prefix+'_qtl_pc.geno.txt', bimbam_dir.strip('/') + '/'+geno_prefix+'_qtl_pc.anno.txt', bimbam_dir.strip('/') + '/' + m + '_phe.txt',geno_prefix, m + '_prescreen'),))
elif gwas_model == 'LM':
qtl_pc_gwas_args.append((gemma_cmd.format(bimbam_dir.strip('/')+'/'+geno_prefix+'_qtl_pc.geno.txt',bimbam_dir.strip('/')+'/'+geno_prefix+'_qtl_pc.anno.txt',bimbam_dir.strip('/')+'/'+m+'_phe.txt',m+'_prescreen'),))
#else:
# qtl_pc_gwas_args.append((phe.reset_index(), geno_prefix+'.link', geno_prefix+'.numeric.txt', geno_prefix+'.map.txt', 1, './output'))
if gwas_model == 'LM' or gwas_model == 'MLM':
s = mp.parallel(mp.run, qtl_pc_gwas_args, threads)
else:
if not os.path.exists('./output'):
os.mkdir('./output')
#s = mp.parallel(glm_gwas, (qtl_pc_gwas_args[0],), 1)
#s = mp.parallel(glm_gwas, qtl_pc_gwas_args[1:], threads)
omics_phe.columns = [i.replace('m/z', 'm.z') for i in omics_phe.columns]
s = glm_gwas(omics_phe, geno_prefix+'.link', geno_prefix+'.numeric.txt', geno_prefix+'.map.txt', 1, './output')
if gwas_model == 'MLM' or gwas_model == 'GLM':
os.remove(geno_prefix+'.link.bed')
os.remove(geno_prefix+'.link.bim')
os.remove(geno_prefix+'.link.fam')
return s
def glm_gwas(omics_phe, pc_geno_prefix, genofile, mapfile, threads, out_path):
try:
geno_prefix = '.'.join(genofile.split('/')[-1].split('.')[:-2])
base.sink('/dev/null')
robjects.r('''
gwas <- function(omics_phe, pc_geno_prefix, geno_prefix, genofile, mapfile, threads, out_path){
library(rMVP)
if(!file.exists(paste(pc_geno_prefix,'.pc.desc',sep=''))){
MVP.Data(fileBed=pc_geno_prefix, fileKin=F, filePC=F, out=pc_geno_prefix, verbose=F)
MVP.Data.PC(T,mvp_prefix=pc_geno_prefix, pcs.keep=5, verbose=F)
}
MVP.Data(fileNum=genofile, fileMap=mapfile, fileKin=F, filePC=F, sep_num='\t', type.geno='double', out=geno_prefix)
geno = attach.big.matrix(paste(geno_prefix, '.geno.desc',sep=''))
map_file = read.table(paste(geno_prefix, '.geno.map',sep=''),sep='\t',header=T)
Covariates_PC = bigmemory::as.matrix(attach.big.matrix(paste(pc_geno_prefix,'.pc.desc',sep='')))
phe_name = names(omics_phe)
for(i in 2:ncol(omics_phe)){
mvp = MVP(phe=omics_phe[,c(1,i)], geno=geno, map=map_file, CV.GLM=Covariates_PC, priority='speed', nPC.GLM=5,
ncpus=threads, maxLoop=10, threshold=0.05, method=c('GLM'), file.output=F, verbose=F)
res = cbind(mvp$map, mvp$glm.results)
names(res) <- c('rs', 'chr', 'ps', 'effect', 'se', 'p_wald')
print(head(res))
write.table(res,file=paste(out_path,'/',as.character(phe_name[i]),'_prescreen.assoc.txt',sep=''),sep='\t', quote=F, row.names=F)
}
}
''')
gwas = robjects.r('gwas')
gwas(omics_phe, pc_geno_prefix, geno_prefix, genofile, mapfile, threads, out_path)
base.sink()
except RRuntimeError:
return 0
except ValueError:
return 0
else:
return 1
# def glm_gwas(omics_phe, pc_geno_prefix, genofile, mapfile, threads, out_path):
# try:
# geno_prefix = '.'.join(genofile.split('/')[-1].split('.')[:-2])
# base.sink('/dev/null')
# if not os.path.exists(pc_geno_prefix + '.pc.desc'):
# rMVP.MVP_Data(fileBed=pc_geno_prefix, fileKin=False, filePC=False, out=pc_geno_prefix,
# verbose=False)
# rMVP.MVP_Data_PC(True, mvp_prefix=pc_geno_prefix, pcs_keep=5, verbose=False)
# rMVP.MVP_Data(fileNum=genofile, fileMap=mapfile, fileKin=False, filePC=False, sep_num = '\t', type_geno='double',out=geno_prefix, verbose=False)
# geno = bigmemory.attach_big_matrix(geno_prefix +'.geno.desc')
# map_file = pd.read_csv(geno_prefix +'.geno.map', sep='\t')
# Covariates_PC = bigmemory.as_matrix(bigmemory.attach_big_matrix(pc_geno_prefix + '.pc.desc'))
# # base.setwd('./output')
# mvp = rMVP.MVP(phe=omics_phe, geno=geno, map=map_file, CV_GLM=Covariates_PC, priority="speed", nPC_GLM=5,
# ncpus=threads, maxLoop=10, threshold=0.05, method=['GLM'], file_output=False, verbose=False)
# gwas_res = pd.DataFrame(mvp.rx2('glm.results'), columns=['effect', 'se', 'p_wald'])
# pos = pd.DataFrame(mvp.rx2('map'))
# pos.columns = ['rs','chr', 'ps']
# pos.index = gwas_res.index
# res = pd.concat([pos, gwas_res], axis=1)
# res.to_csv(out_path.rstrip('/') + '/' + str(omics_phe.columns[1]) + '_prescreen.assoc.txt', index=False,sep='\t')
# base.sink()
# except RRuntimeError:
# return 0
# except ValueError:
# return 0
# else:
# return 1
def prescreen(omics_phe,suggest_pvalue):
phe_sig_qtl = list()
sig_phe_names = list()
for fn in glob.glob('output/*_prescreen.assoc.txt'):
gwas = pd.read_csv(fn, sep='\t')
if gwas['p_wald'].min() > suggest_pvalue:
continue
phe_name = fn.split('/')[-1].replace('_prescreen.assoc.txt','')
pos = list()
for rs in gwas.loc[gwas.p_wald <= suggest_pvalue, 'rs'].values:
chrom,start,end = rs.split('_')[1:4]
start,end = int(start),int(end)
if not pos:
pos.append([chrom,start,end,phe_name])
else:
if pos[-1][0] != chrom:
pos.append([chrom,start,end,phe_name])
else:
if start < pos[-1][2]:
start = start if start < pos[-1][1] else pos[-1][1]
end = end if end > pos[-1][2] else pos[-1][2]
pos[-1] = [chrom,start,end,phe_name]
else:
pos.append([chrom,start,end,phe_name])
phe_sig_qtl.extend(pos)
if not gwas.loc[gwas.p_wald <= suggest_pvalue,:].empty:
sig_phe_names.append(phe_name.replace('m.z','m/z'))
sig_omics_phe = omics_phe.loc[:, sig_phe_names]
phe_sig_qtl = pd.DataFrame(phe_sig_qtl,columns=['chr','start','end','phe_name'])
return sig_omics_phe, phe_sig_qtl